Environmental Consultants & Contractors

SCS ENGINEERS

October 7, 2022 File No. 25218040.02

Ann Bekta Wisconsin Department of Natural Resources 2514 Morse Street Janesville, WI 53545-0249

Mike Ellenbecker Wisconsin Department of Natural Resources 2532 Wynfield Dr. Racine, WI 53406-1897

Subject: Hazardous Waste Treatment Variance Request

Boundary Road Landfill Waste Removal

WDNR License No. 0011/FID#268152390 Boundary Road Landfill

WDNR License No. 4491/FID#268696560 Orchard Ridge RDF East Expansion

Dear Ms. Bekta and Mr. Ellenbecker:

On behalf of Waste Management of Wisconsin, Inc. (WMWI), SCS Engineers (SCS) is submitting two copies of the enclosed request for Wisconsin Department of Natural Resources (WDNR) approval of a hazardous waste treatment variance pursuant to § NR 670.079, Wis. Admin. Code, for ex-situ, on-site storage, and treatment of potentially hazardous waste that may be encountered during the exhumation of the closed Boundary Road Landfill (BRL).

BRL is a closed solid waste landfill that accepted municipal and industrial waste from approximately 1954 to 1971. The site is listed on the National Priorities List (NPL) and is subject to a source control record of decision (ROD) signed in 1996. WDNR issued a favorable feasibility determination on July 30, 2021, concerning the adjacent Orchard Ridge Landfill (ORL) East Expansion, Southern Unit expansion, construction of which will extend into the footprint of BRL. As part of the Southern Unit expansion project, all of the waste material will be excavated from BRL. Non-hazardous waste will be transferred directly from the unlined BRL site to the adjacent lined ORL. The waste relocation will occur in phases over the course of 6 to 8 years.

As part of prior waste characterization studies, limited quantities of potentially characteristic hazardous waste have been identified in BRL. WMWI anticipates that additional hazardous waste (characteristic and potentially listed) may be encountered during the waste removal process and/or during excavation of underlying soil. WMWI is requesting a variance from the hazardous waste treatment licensing requirements of NR 670.001, Wis. Admin. Code, to allow on-site storage and treatment of potentially hazardous waste from BRL prior to disposal in the ORL. The anticipated types of potentially hazardous waste and likely treatment methods are described in the attached variance request report. Since the exhumation and on-site treatment or off-site disposal of BRL hazardous waste encountered during the project would be considered hazardous waste remediation, a variance is allowed pursuant to § NR 670.079(1), Wis. Admin. Code, because requiring a treatment or storage license would "constitute an undue or unreasonable hardship."

Ms. Ann Bekta and Mr. Mike Ellenbecker October 7, 2022 Page 2

Ex-situ, on-site treatment of characteristically hazardous bulk waste materials and soil will likely be the most practical and environmentally protective approach for management of these materials during the exhumation process, because all of the materials will be managed within the BRL footprint or the lined area of ORL. As such, the granting of this variance will not result in undue harm to human health or the environment and indeed will result in environmental betterment.

Public notice of this variance request has been provided in conformance with the requirements of § NR 670.079(3), Wis. Admin. Code. The public notice has been accepted for publication in the Milwaukee Journal Sentinel on October 10, 2022. A copy of the public notice provided to the newspaper publisher is provided in **Appendix C** of the enclosed Remediation Variance Request Report.

Please do not hesitate to contact us at (608) 224-2830 if you have any questions regarding this variance request.

Sincerely,

Sherren Clark, PE, PG

Vice President, Project Director

SCS Engineers

Senior Project Manager

SCS Engineers

Eric Oelkers, PG

EO/AJR_REO/SCC

cc: BJ LeRoy, WDNR

> Tyler Field, WMWI Brett Coogan, WMWI Ryan Baeten, WMWI

Menomonee Falls Public Library

Encl. Remediation Variance Request

I:\25218040.02\Deliverables\HW Treatment Variance Req\221007_HW Treatment Var_BRL_v0.9_Final.docx

Remediation Variance Request for Boundary Road Landfill Waste Removal Project

Boundary Road Landfill Menomonee Falls, Wisconsin WDNR License #11 EPA ID # WID058735994

Prepared for:

Waste Management of Wisconsin, Inc. Orchard Ridge RDF W124N9355 Boundary Road Menomonee Falls, Wisconsin 53051

SCS ENGINEERS

25218040.02 | October 7, 2022

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Table of Contents

2ec	tion		Page		
1.0	Intro	oduction and Background	1		
	1.1	Facility Information	1		
		1.1.1 Site Name and Address	1		
		1.1.2 Site Location	1		
		1.1.3 Owner Contact	1		
		1.1.4 Consultant Contact	1		
	1.2	Purpose	2		
	1.3	Project Description and Current Conditions	2		
	1.4	Public Notice	3		
2.0	Was	ste Characterization and Regulatory Approach	3		
	2.1	Waste Quantity and Types	3		
	2.2	Hazardous Waste Determination	4		
	2.3	Regulatory Approach for Managing Hazardous Wastes	6		
		2.3.1 Treatment in Containers	6		
		2.3.2 Treatment Exemption and Variance	6		
		2.3.3 Area of Contamination Policy	6		
3.0	Proje	ject Approach, Phasing and Schedule	7		
4.0	Was	ste Excavation, Processing, and Treatment	7		
	4.1	Pre-Excavation Preparation	7		
	4.2	Waste Excavation			
	4.3	Waste Processing	8		
		4.3.1 Waste Screening	8		
		4.3.2 Typical Waste Handling Procedures	9		
		4.3.3 Suspicious Waste Handling Procedures	10		
		4.3.3.1 Intact Drums and Transformers	11		
		4.3.3.2 Bulk Suspicious Wastes	13		
	4.4	Soil Classification and Management	14		
5.0	Bulk Suspicious Waste or Soil Treatment Procedures				
	5.1	1 Treatment Approach			
	5.2	Treatment Standards			
	5.3	Hazardous Waste Recordkeeping and Reporting			
6.0	Refe	erences	18		

Appendices

Appendix A Existing Conditions Map

Appendix B Boundary Road Landfill Waste Characterization Investigation Report – Text, Tables,

and Figures

Appendix C Public Notice

 $I:\25218040.02\Deliverables\HW\ Treatment\ Variance\ Req\221007_HW\ Treatment\ Var_BRL_v0.9_Final.docx$

1.0 INTRODUCTION AND BACKGROUND

1.1 FACILITY INFORMATION

1.1.1 Site Name and Address

The project involves two facilities at the same location:

- Boundary Road Landfill (WDNR License #0011/FID#268152390).
- Orchard Ridge Landfill (ORL), including:
 - Orchard Ridge Recycling and Disposal Facility (RDF), License 3360, FID#268262940.
 - Orchard Ridge Landfill East Expansion, License #4491, FID#268696560.

The site address is:

Orchard Ridge Recycling and Disposal Facility N96 W13073 County Line Road Menomonee Falls, Wisconsin 53051

Waste will be removed from the closed Boundary Road Landfill (BRL) and disposed of in the active ORL.

1.1.2 Site Location

BRL and ORL are located within Section 1, Township 8 North, Range 20 East, Menomonee Falls, Waukesha County, Wisconsin. With the proposed Eastern Expansion, Southern Unit, ORL will ultimately expand into the current BRL footprint, following the BRL waste removal. The locations of the existing landfills and proposed expansion are shown on the plan sheet provided in **Appendix A**.

1.1.3 Owner Contact

Brett Coogan, District Manager Waste Management of Wisconsin, Inc. N96 W13073 County Line Road Menomonee Falls, WI 53051 262-509-5641

1.1.4 Consultant Contact

Sherren Clark, PE, PG SCS Engineers 2830 Dairy Drive Madison, WI 53718 608-216-7323

1.2 PURPOSE

This Remediation Variance Request has been prepared to address hazardous materials that may be encountered during the relocation of waste from the BRL Superfund site into the ORL Subtitle D municipal solid waste landfill. Since the exhumation and on-site treatment or off-site disposal of BRL hazardous waste encountered during the project would be considered hazardous waste remediation, a variance is allowed pursuant to § NR 670.079(1), Wis. Admin. Code because requiring a treatment or storage license would "constitute an undue or unreasonable hardship."

This document provides Remedial Action Plan information in support of a request for the Wisconsin Department of Natural Resources (WDNR) approval of a remediation variance pursuant to § NR 670.079, Wis. Admin. Code. The purpose of the variance is to temporarily allow on-site storage and ex-situ treatment of listed and/or characteristic hazardous waste generated during the BRL waste removal. Since the on-site storage and ex-situ treatment of listed and/or characteristic hazardous waste generated during the BRL waste removal conducted pursuant to the procedures described herein will result in an environmental betterment, the granting of this variance will not result in undue harm to human health or the environment. § NR 670.079(1), Wis. Admin. Code. The potentially hazardous waste, if any, will most likely consist of waste or soil contaminated with metals or volatile organic compound (VOC) concentrations exceeding toxicity characteristic regulatory limits established in NR 661 or listed wastes that may be identified during the exhumation process.

Additional information on the waste removal from BRL is provided in the BRL Property Redevelopment Plan, which was submitted to the WDNR in **Appendix C** of the February 2022 Plan of Operation (POO) for the Orchard Ridge Recycling and Disposal Facility Eastern Expansion, Southern Unit. This variance request includes information from that document that is relevant to the variance.

1.3 PROJECT DESCRIPTION AND CURRENT CONDITIONS

BRL is a National Priorities List (NPL) listed site (WDNR Landfill License #11, EPA ID #WID0558735994) located at the ORL complex. Upon approval of the POO for the Eastern Expansion, Southern Unit, construction of the new landfill areas will be sequenced with the excavation of the existing BRL waste. Development of the Southern Unit will involve excavating BRL waste (both inside and outside the footprint of the Eastern Expansion, Southern Unit) and re-disposing of the waste within the adjacent ORL (defined to include: ORL, East Expansion, and constructed phases of the Eastern Expansion, Southern Unit). The East Expansion is located north of BRL and the Eastern Expansion, Southern Unit will be contiguous with the East Expansion.

BRL began accepting waste in or around 1954 and continued until 1971. In the early 1980s, Waste Management of Wisconsin, Inc. (WMWI) installed an approved landfill cover with vegetation and constructed a slurry cutoff wall and leachate collection system along the southern perimeter of the site. In the late 1990s, WMWI performed remedial action (RA) according to an approved Record of Decision (ROD) and WDNR Environmental Repair Contract (#SF-90-01). The RA included placement of final cover consisting of 2 feet of compacted clay, 1.5 feet of rooting zone, and 6 inches of topsoil. WMWI also completed 12 acres of asphalt and constructed three leachate extraction wells, landfill gas and leachate piping, blower and flare. A portion of the asphalt paving is underlain by waste.

BRL waste characteristics were evaluated as part of the 1993 Remedial Investigation (RI) Report by Warzyn. Additional waste characterization investigation performed since the 1993 RI report is documented in SCS Engineers (SCS) May 2020 Waste Characterization Investigation Report (WCIR). The results of the WCIR are summarized in this document, along with a discussion of the proposed waste removal and management approach.

The WCIR text, tables, and figures are included in **Appendix B**. Analytical results for waste and soil samples collected within and below the BRL waste are summarized in WCIR Tables 3 through 6 and shown on WCIR Figures 5 through 7. Analytical results for groundwater, surface water, and leachate samples are summarized in WCIR Tables 11 through 14.

The complete WCIR also includes information in the appendices, in addition to the WCIR text, tables, and figures in **Appendix B**. The WCIR appendices include WDNR correspondence; laboratory reports for landfill gas, waste, soil, and leachate samples; photographs of the waste borings; and waste boring and leachate head well documentation forms. Please refer to the complete WCIR for this information.

1.4 PUBLIC NOTICE

Public notice of this variance request has been provided in conformance with the requirements of § NR670.079(3), Wis. Admin. Code. The public notice has been accepted for publication in the Milwaukee Journal Sentinel on October 10, 2022. A copy of the public notice provided to the newspaper publisher is provided in **Appendix C**.

2.0 WASTE CHARACTERIZATION AND REGULATORY APPROACH

2.1 WASTE QUANTITY AND TYPES

Based on investigations performed at BRL (12 waste characterization borings), the waste thickness ranges from 10.5 feet to 27 feet (WCIR Table 2) and the waste quantity estimate is approximately 1.3 million cubic yards. Waste materials encountered during sampling at the facility were generally consistent with typical municipal solid waste. Crushed metal drums and parts of drums were encountered in borings WC-5 and WC-8. Green and yellow paint was observed in boring WC-8. Petroleum, paint, and/or solvent-like odors were noted in several borings.

The site history is summarized in the Waste Characterization Investigation Work Plan (SCS, 2019). In general, the waste characteristics on which the Remediation Variance Request is based include the following:

- The disposal history indicates primarily municipal solid waste with some possible liquid hazardous waste.
- The waste characterization investigation indicated primarily municipal solid waste with some drums. Petroleum or solvent odors were noted for some bulk municipal waste/daily cover, and most waste samples contained VOCs. The only waste sample exceeding toxicity characteristic leaching procedure (TCLP) limits was for waste impacted by paint waste (benzene and lead).
- VOCs are typically the contaminants of concern for landfills of this vintage (accepting waste from 1954 to 1971).

The ROD listed general waste types and sources and mentions disposal of liquid hazardous waste at the site. Based on review of WDNR files, SCS has not identified any further details on waste disposal at the site.

Based on the site history and waste characterization investigation, the bulk suspicious materials most likely to be encountered are waste or soils containing high concentrations of VOCs; however, other contaminants, including lead and PCBs, have been detected. Waste materials encountered during sampling at the facility were generally consistent with typical municipal solid waste.

The primary findings from the analysis of two waste samples from each of the 12 borings for polychlorinated biphenyls (PCBs) total VOCs, and TCLP metals, TCLP VOCs and TCLP SVOCs, as described in the 2020 Waste Characterization Investigation Report include:

- The waste samples met the TCLP limits with the exceptions of benzene and lead in one sample from WC-5.
- PCBs were detected in all but one of the waste samples, with an average concentration of 13 milligrams per kilogram (mg/kg). Of the 25 waste samples analyzed for PCBs, one exceeded 50 mg/kg, with a result of 60 mg/kg in a sample from WC-6.
- Petroleum VOCs (PVOCs) were widespread and were at significantly higher concentrations in samples from WC-3, WC-5, and WC-6.
- Chlorinated VOCs (CVOCs) were detected in some waste samples but were generally at much lower concentrations than PVOCs.

2.2 HAZARDOUS WASTE DETERMINATION

Suspicious waste will be evaluated using the hazardous waste determination steps provided in § NR 662.011, Wis. Admin. Code. This section of the Remediation Variance Request describes the anticipated approach for applying these steps to the BRL waste removal. Available evidence in the field will be evaluated when making hazardous waste determinations and testing will be employed when the labeling or context of the material are insufficient to make a determination.

Waste disposal at BRL ended in 1971, prior to the adoption of the Resource Conservation and Recovery Act (RCRA) and associated rules for hazardous waste characterization and management. Therefore, at the time of disposal, none of the BRL wastes were either listed or characteristic hazardous wastes. As explained further below, for the execution of this project, evaluation of the excavated BRL material for hazardous waste characterization will occur either upon exhumation or prior to removing the waste from the BRL area of contamination (AOC). The AOC includes the area within the existing BRL limits of waste. If the waste characterization evaluation indicates the exhumed material is hazardous, then the hazardous waste will be considered to be "generated" when it is placed outside the AOC. Material that would be considered "hazardous waste" if removed from the AOC will not be placed in the existing or newly constructed portions of ORL unless it either 1) has first been treated and rendered non-hazardous, or 2) is placed in a designated portion of ORL for the purpose of treatment in accordance with a remediation variance approved under NR 670.079(3), Wis. Admin. Code.

In the landfill environment, with wastes disposed of a minimum of 50 years ago and mixed with other wastes during collection, transportation, and disposal, the source of contamination in bulk waste or soil generally is not known. For a waste to be classified as a listed hazardous waste, the generator must determine whether the waste meets any of the listing descriptions under sub-ch. D of ch. NR 661. Acceptable knowledge that may be used in making an accurate determination as to whether the waste is listed may include waste origin, composition, the process of producing the waste, feedstock, and other reliable and relevant information. If information regarding the waste

origin and/or process producing the waste is unavailable or inconclusive, then the waste or soil cannot be determined to contain a listed hazardous waste.

Wastes will also be evaluated to determine if they are characteristically hazardous. The evaluation of bulk waste or soil identified as potentially characteristically hazardous will be based on waste characteristics including toxicity, ignitability, corrosivity, or reactivity. For example, if a significant volume (e.g., more than 20 cubic yards) of material that appears likely to be foundry sand is encountered within the waste, it will be identified as suspicious and tested to determine if it is characteristically hazardous. Although unlikely, bulk waste or soil may be determined to be or to contain a listed hazardous waste if the source can be adequately characterized to make this determination.

Similarly, an intact container of industrial waste, such as a 55-gallon drum, can only be determined to contain a listed hazardous waste if the source and/or generating process can be documented to meet the definition of a specific hazardous waste listing. As noted above, neither the ROD nor the WDNR file information reviewed by SCS identified any specific listed hazardous wastes as having been disposed in BRL. In the landfill environment, with wastes disposed of a minimum of 50 years ago, it is unlikely that industrial wastes can be identified as listed hazardous wastes. If legible labels are visible on containers, the containers will be evaluated to identify whether the material may fall into the category of a listed waste. Otherwise, if an intact container of waste is encountered, the hazardous waste determination will be based on the characteristics of the industrial waste (i.e., toxicity, ignitability, corrosivity and reactivity).

In situ soil excavated from below the waste would be classified as a hazardous waste only if it exceeds a TCLP limit when it is removed from the AOC or if it is treated ex-situ within the AOC, because that is when the hazardous waste is generated. Soil mixed with waste will be managed in the same manner as the waste.

The process for identifying and handling potentially hazardous wastes is detailed in **Section 4.3**. Wastes that may require testing and/or special management will be initially identified as "suspicious wastes," as that term is defined in **Section 4.3.1**, then evaluated as described in **Section 4.3.5**. Suspicious wastes include intact drums, transformers, and bulk solid wastes identified as potentially requiring treatment prior to disposal in ORL based on the criteria outlined in **Section 4.3.5**. Bulk waste or contaminated soil that is classified as characteristic hazardous waste, based on TCLP testing of representative sample(s), will be treated on-site and rendered non-hazardous prior to disposal in ORL or it will be transported off-site for treatment and/or disposal at a facility licensed to accept it. Waste or soil identified as hazardous waste and treated to be rendered non-hazardous will also meet the RCRA Land Disposal Restrictions (LDRs) prior to disposal in ORL, as described in **Section 4.3.6**.

Wastes in intact drums or containers will be evaluated for a hazardous waste determination as described in **Section 4.3.5** and will be managed as hazardous wastes, if appropriate. Potentially intact waste containers smaller than 55-gallon drums will be segregated from the waste during the exhumation process to the extent that identification and separation of such containers is practicable while using large equipment to excavate thousands of cubic yards of material per day. Intact drums or containers include those that are capable of holding 75 percent of their original capacity. Intact electrical transformers will also be segregated, characterized, and managed in accordance with Toxic Substances Control Act (TSCA) requirements, and Ch. NR 157, Wis. Admin. Code, if appropriate. Transformers that contain liquids not obviously attributable to infiltration of leachate will also be evaluated for RCRA hazardous waste characteristics and will be managed appropriately.

Regulatory options for managing waste or soil that may potentially be classified as hazardous are discussed in the following section.

2.3 REGULATORY APPROACH FOR MANAGING HAZARDOUS WASTES

WMWI anticipates the project will be completed using a combination of the following regulatory approaches for management of potentially hazardous waste that may be encountered during removal of the BRL waste or underlying soil:

- Exemption for treatment in accumulation containers.
- Hazardous waste remediation variance.
- AOC policy.

The proposed applicability and implementation of each of these approaches is described below. These options were developed based on WDNR's Guidance for Hazardous Waste Remediation (WDNR, 2014).

2.3.1 Treatment in Containers

Regulatory options for ex situ treatment without triggering hazardous waste treatment licensing requirements include treatment in containers, which is exempt by rule (NR 670.001(3)(b)11), or treatment under the terms of a remediation variance. For small quantities of waste and/or soil, treatment in containers such as roll-off boxes is likely to be the most practicable approach. Treatment in accumulation containers is exempt provided that the applicable conditions in ss. NR 662.014, 662.016, or 662.017, Wis. Admin. Code, are met, which include accumulation quantities, timelines, recordkeeping, and other requirements. If treatment in containers is required to meet LDR standards, then a waste analysis plan (WAP) will be prepared consistent with the requirements of NR 688.07(1)(e).

2.3.2 Treatment Exemption and Variance

Due to the unknown volume of waste and/or soil that may require treatment prior to disposal, WMWI has prepared this request for approval of a remediation variance to allow ex situ treatment in a pile within the BRL footprint or within the ORL lined area. Anticipated treatment options are discussed in more detail in **Section 4.3.6**.

Waste or soil will be treated to reduce contaminant concentrations to below the TCLP limits, so that it meets the ORL acceptance limits. In addition, the LDR treatment standards will apply to treatment of hazardous waste, as discussed in more detail in **Section 4.3.6**.

2.3.3 Area of Contamination Policy

The AOC policy was first established in 1990 by the U.S. Environmental Protection Agency (U.S. EPA) and has been incorporated into the WDNR's hazardous waste remediation rules and guidance (WDNR, 2014). Under the AOC policy, waste within an AOC can be consolidated without creating a new point of generation for hazardous waste. Waste can also be treated in-situ within an AOC without triggering generation. Because there is no new generation, no hazardous waste testing or determination is needed and the LDR and Minimum Technology Requirements (MTRs) are not triggered. Ex situ treatment is not covered under the AOC policy, so it will need to be covered under a

remediation variance or under the exemption for treatment in containers, as described in the previous sections.

This variance request does not include placement of exhumed waste that would otherwise be considered hazardous by definition or characteristic within ORL under the AOC policy, even if the exhumed waste will remain within the pre-exhumation limits of BRL waste. The AOC policy will allow exhumed wastes and contaminated soil from the BRL site to be temporarily stockpiled within the BRL footprint, without triggering hazardous waste testing requirements or LDRs. Hazardous waste that may be moved into ORL for ex-situ treatment is not covered under the AOC policy and will be addressed pursuant to this hazardous waste treatment variance.

If treatment is performed in situ within the AOC, then hazardous waste testing and treatment licensing requirements will not apply. If treatment is performed ex situ (i.e., following excavation and consolidation), the AOC policy will not apply, even if the ex situ treatment is performed within the AOC. Ex situ treatment will be covered under the treatment in containers option or the treatment exemption and variance, as described above.

3.0 PROJECT APPROACH, PHASING AND SCHEDULE

WMWI will complete the exhumation of BRL waste in phases. The waste exhumation and relocation process is anticipated to proceed as described below; however, as work progresses, the approach may be modified to optimize the process based on the conditions encountered. Per the Feasibility Report (TRC, 2020), the Eastern Expansion, Southern Unit of ORL includes the adjacent lateral expansion south of the East Expansion (including exhumation of BRL) and a vertical expansion overlying the southern portion the East Expansion. The proposed expansion will be developed and operated in three phases, Phases 5, 6, and 7. Each phase will be divided into two modules. BRL waste located outside the expansion footprint will be excavated as the project proceeds in adjacent areas inside the expansion footprint, as shown in the phasing drawings in the POO plan set.

Topsoil in each phase will be stripped and stockpiled for future use. Construction of each phase will then require excavation of BRL final cover soil, the underlying biosoil grading layer, waste and underlying soil to the design subbase grades or to the bottom of the BRL waste, whichever is deeper. Management of the waste materials excavated from the BRL is described in **Section 4.0.**

The waste excavation and relocation or processing phases are estimated to occur over a 6- to 8-year period, starting in late 2022 following approval of the Eastern Expansion, Southern Unit POO. The estimated breakdown of waste volume and schedule by waste removal phase is detailed in the POO. Waste removal will be focused in the winter weather months, from November through March, to minimize dust, run-off and potential nuisance odors.

4.0 WASTE EXCAVATION, PROCESSING, AND TREATMENT

4.1 PRE-EXCAVATION PREPARATION

Prior to the start of waste excavation activities, other site preparation activities will occur. Pre-waste removal activities may include:

- Phased gas extraction system removal and reconfiguration.
- Phased leachate head well and/or monitoring well abandonment.
- Erosion control and storm water management preparations.

• Set up of suspicious and hazardous waste temporary storage/management areas (see Section 4.3.3).

Pre-excavation activities will include preparation of Site Specific Health and Safety Plans (SSHSPs) in accordance with OSHA's HAZWOPER requirements by the contractor(s) who will be performing waste removal tasks.

4.2 WASTE EXCAVATION

The BRL waste volume is estimated to be 1.3 million cubic yards. The waste excavation will include all identified BRL waste regardless of whether the waste is located inside the expansion limits of ORL. In addition to the BRL waste, materials to be excavated will include the final cover soils (estimated 402,500 cubic yards), the biosoil grading layer (estimated 334,250 cubic yards), and soil below the BRL waste that is excavated to reach the design subbase grades (estimated 167,600 cubic yards), resulting in a total estimated excavation volume of 2.2 million cubic yards (quantities from Table F-1, February 2022 Plan of Operation).

Waste excavation will start on the northern end of BRL and proceed south. The waste removal phasing for areas inside and outside the Southern Unit footprint is addressed in the POO phasing drawings. As waste is excavated, it will be managed as described in **Section 4.3**. The BRL waste exhumation activities will be performed using standard earthmoving equipment. Waste that is not separated for special management as described in **Section 4.3** will be hauled to an active area of ORL for direct disposal. Waste will generally be removed in lifts, similar to the typical filling procedure in reverse. The surface of the waste lift will be sloped to the interior and will drain to temporary sumps excavated in the waste to facilitate leachate collection and removal.

4.3 WASTE PROCESSING

4.3.1 Waste Screening

As waste is excavated, it will be screened for classification into waste type categories using a screening process and categories described below. The overall waste screening and management process is shown graphically as a flow diagram on **Figure 2**.

The major waste type categories include:

- Typical waste (municipal and industrial).
- Salvageable waste.
- Suspicious waste.
- Hazardous waste.

For this project, suspicious waste is defined as the following:

- Intact, non-empty drums or containers that are at least 5 gallons in capacity. (Note that it
 may be difficult to consistently identify and segregate containers smaller than typical
 55-gallon drums based on the size of the excavation equipment expected to be used for
 waste exhumation).
- Intact electrical transformers and non-intact transformers that contain liquid that is not obviously the result of leachate infiltration.

- Waste that looks like paint, sludge, foundry sand, or other obvious industrial waste, or
 has an obvious solvent odor, and is present in a significant, recoverable volume (e.g.,
 more than 20 cubic yards). The recoverable volume is a practical limit based on the size
 of excavation equipment and the required pace of waste relocation for the project to be
 feasible. Small quantities of sludge or foundry sand mixed with municipal waste will not
 be feasible to identify or separate.
- Soil that appears to be foundry sand, has an obvious solvent odor, or has significant staining.
- Waste or soil encountered that creates conditions requiring a stoppage of work due to potential worker health and safety concerns.
- Waste or soil in the immediate vicinity of samples collected during the waste characterization investigation where laboratory testing indicated that the sampled material could be characteristically hazardous or contain PCBs greater than 50 mg/kg (e.g., waste within 5 feet in any direction from the samples collected in borings WC5 and WC6).

Specifically excluded from the definition of suspicious wastes for the BRL waste removal are:

- Waste that presents as municipal solid waste.
- Waste that presents as other solid wastes currently or historically accepted at ORL, such as construction and demolition debris or coal ash.

Hazardous waste is defined in accordance with Ch. NR 661, Wis. Admin. Code, and the hazardous waste determination process provided in **Section 2.2**. The operator's knowledge of the history of the site, along with sampling and analysis completed during the waste characterization investigation, indicate that a large majority of the waste and soil are not hazardous.

The waste characterization investigation sampling and laboratory TCLP analysis identified hazardous concentrations of benzene and lead in the area of boring WC5 in materials that exhibited strong paint/solvent, odors, elevated PID readings, and crushed drums. Additional representative sampling and testing of the waste in this area, and other areas with similar observed characteristics, will be performed prior to removing the material from the BRL AOC to identify whether the waste exceeds TCLP limits. If applicable TCLP limits are exceeded, then additional analysis for the identified contaminants of concern will be performed on samples collected at the apparent limits of impacts to confirm the extent of hazardous materials.

Waste that is identified as potentially suspicious waste will initially be evaluated through field observations or screening. Based on that evaluation, waste that appears to be potentially hazardous will be subject to representative sampling and testing, as described in **Section 4.3.5**, to determine whether the material is hazardous waste.

4.3.2 Typical Waste Handling Procedures

Waste determined to be typical municipal or industrial waste will be handled as follows.

 Excavators or other heavy equipment will remove the waste and load it into articulated dump trucks.

- If typical waste materials are waterlogged with leachate when excavated, they will be
 allowed to drain and/or be mixed with drier waste prior to loading into trucks to prevent
 the separation of liquids from the waste during transportation or placement, unless the
 disposal of BRL leachate in ORL is approved under the ORL Research, Development, and
 Demonstration (RD&D) Plan. Leachate drained from excavated waste within BRL will be
 managed as described in the POO. Hazardous waste will not be mixed with other waste
 to dilute hazardous constituent concentrations.
- BRL waste will be moved to active areas in ORL where it will typically be commingled with incoming waste and compacted.
- The redeposited wastes will be covered daily with alternative daily cover (ADC) or general
 site soils. WMWI will maintain a minimum 15-foot separation distance between the
 redeposited waste and the granular drainage layer since this material is unlikely to meet
 the requirements of select waste typically used for initial waste placement over newly
 constructed liner areas.

4.3.3 Suspicious Waste Handling Procedures

The term "suspicious waste" is used throughout this variance request to indicate the portions of the waste mass that are worthy of closer assessment. Identification of materials as suspicious waste is the first step in the process of reducing or eliminating the possibility that materials considered hazardous under current regulations will be transferred from existing BRL to the ORL expansion. Materials will be managed as potentially hazardous as soon as this potential is identified based on testing results, field screening, container labeling, equipment operator experience etc.

The primary identification of suspicious waste will be identification by the equipment operator(s). Equipment operators will be trained to look for and identify suspicious waste during the exhumation process based on the (primarily visual) screening criteria identified in **Section 4.3.1**. Initial training will be reinforced during regular safety meetings.

A technician will be onsite working with the equipment operator(s) and documenting the waste removal process, but the technician will not be in the excavation area monitoring during active waste removal due to safety concerns. The technician will view the excavation from a safe distance from the working face and operating equipment in accordance with the health and safety protocols of the SSHSP to be developed for the exhumation work. The technician will be prepared to perform photoionization detector (PID) screening of material removed from the working face if solvent or petroleum odors are observed. As a final check, waste will be visually screened when it is unloaded and placed in ORL. This provides a "double check" opportunity to identify such wastes. If suspicious waste is encountered it will be segregated for further evaluation, as described below.

Safety for site workers will be addressed in each contractor's SSHSP in accordance with OSHA's HAZWOPER requirements. These plans will be developed by contractors after they have been engaged to work on the project. Protections are anticipated to include using equipment with enclosed cabs, active and passive monitoring of the breathing zone, minimizing waste contact and manual waste separation, personal protective equipment (PPE), and engineering controls to minimize exposure. Each contractor will maintain a copy of their SSHSP onsite.

If suspicious waste as defined in **Section 4.3.1** is encountered, it will be segregated from the exhumed waste stream and retained within the BRL footprint for additional characterization, potential on-site treatment and disposal and/or off-site disposal. Suspicious waste may be

temporarily stockpiled within ORL provided that the placement is either 1) within the area of the current BRL footprint as allowed under the AOC policy (i.e. within a portion of the Southern Unit that overlies the BRL limits), or 2) in accordance with an approved hazardous waste remediation variance. Suspicious waste temporarily stockpiled in ORL that is subsequently determined to be hazardous must be treated on-site (in containers or in accordance with a remediation variance) prior to disposal or removed from the site for off-site disposal at a facility licensed to accept it.

If a work stoppage is necessary to address potential worker health and safety concerns, the health and safety issue will be addressed and the waste at the excavation face will be inspected for the source materials prior to the resumption of waste excavation activities at that location. Source materials, if identified, will be segregated from the exhumed waste stream for additional characterization, potential on-site treatment and disposal, and/or off-site treatment and disposal. If conditions allow, waste exhumation may continue in another area of the active waste removal phase while work is temporarily stopped at the suspicious waste location. WDNR will be notified if a complete work stoppage occurs.

Waste handling procedures are described below for intact drums and transformers and for bulk suspicious wastes, such as waste or soil containing high concentrations of solvents.

4.3.3.1 Intact Drums and Transformers

Prior to starting each phase of waste removal, a secure storage area will be established for temporary storage of drums, containers, and transformers identified as suspicious wastes. Drums and containers will be managed as follows:

- Intact, non-empty drums and other containers greater than 5 gallons in capacity identified during the exhumation process will be segregated from the waste and will be staged in the secure storage area. Drums or containers will be considered intact if they do not appear to be crushed or perforated by corrosion or previously punctured, are capable of retaining 75 percent of their original capacity, and can be safely removed from the waste excavation in this intact condition with the mechanized equipment available.
- Non-intact drums that appear to contain water or leachate based on field observations and/or field screening (i.e., liquid most likely accumulated after disposal) will be managed as non-suspicious waste and transferred with the surrounding waste to ORL for disposal. Liquid found in non-intact containers located below the apparent water table is assumed to be groundwater or leachate. Containers found in otherwise dry materials that appear to contain liquids will be set aside for further evaluation consisting of visual observations of the container (including any labels or identifying marks) and its contents, field screening of the headspace with a PID and 4-gas meter, and field screening of liquid with pH paper. The liquid will be handled as leachate if the screening is consistent with leachate characteristics. If the liquid is not obviously leachate, the containers will be placed in the container staging area with appropriate containment as needed.
- Crushed or empty drums will also not be segregated from the waste and will be handled in the same manner as the general excavated waste.

If a concentration of intact drums separated by a distance less than the width of the excavator bucket is identified, the drums will be left in place until a WMWI representative can evaluate the drums and identify safe handling procedures. Intact drums in close proximity to other drums will

likely be removed individually using drum grapples or similar equipment. Drums that are intact but appear to be in poor condition will be placed in appropriate over-pack containers as necessary.

Specific handling procedures for hazardous materials will be addressed in the health and safety plan that will be developed prior to the start of work. In general, if field screening or visual observations indicate drums or other materials encountered during the excavation of waste may present an increased risk to worker safety, WMWI will perform additional assessment of the potentially hazardous material before removal activities resume. Elevated concentrations of airborne contaminants in the breathing zone or the potential for contact with liquid wastes during drum handling may require the establishment of an exclusion zone and limited operations in Level C or B PPE.

Intact containers are planned to be disposed off-site by a third party vendor unless testing of representative samples of the container contents shows that the material is not hazardous (and the material is not a listed waste). Intact drums and containers segregated from the waste will be staged in the secure storage area pending evaluation by a third party disposal contractor. It is not anticipated that the contractor performing the exhumation or WMWI will open intact containers for evaluation. The disposal contractor may use a combination of visual observation of physical characteristics and field analysis to group containers for further testing as required for off-site disposal. Labeling, if any, will be evaluated to identify whether the contents may be a listed waste. Representative samples of drum (or other container) contents for off-site disposal will be collected for laboratory analysis based on the suspected drum contents consistent with the requirements of the intended off-site disposal facility.

Any intact drums or containers of liquid waste that are either determined or assumed to be hazardous waste will be transported off site for treatment and/or disposal. Multiple drums of similar compatible materials may be combined for shipping. Storage, transportation, and off-site treatment or disposal of drums or containers of liquid hazardous waste will be subject to hazardous waste regulations. Drums and containers determined to be potentially hazardous waste will be managed as hazardous waste unless and until testing results or other characterization information is available to document the contents as non-hazardous.

Management of hazardous waste shipped off site will be in accordance with the applicable generator requirements of Ch. NR 662, Wis. Admin. Code.

Liquid wastes determined to be non-hazardous may be disposed of in ORL in accordance with the approved RD&D Plan if they meet the criteria in the WMWI Special Waste Management Plan (SWMP). Approval and documentation requirements of both of these plans will be followed. Non-hazardous liquid waste from drums or other containers may also be transported off site for treatment or disposal at an appropriate facility.

Transformer casings identified during visual waste screening will be segregated from the waste. Transformer casings will be checked for free liquids and PCBs. If the casings contain no free liquid, they may be handled in the same manner as the excavated waste. Transformers that contain free liquids and residual PCB concentrations greater than 50 ppm will be packaged for off-site disposal at a licensed facility. Intact electrical transformers will be managed in accordance with the TSCA requirements and Ch. NR 157, Wis. Admin. Code, if necessary. All PCB-contaminated materials shipped off site will be managed in accordance with Ch. NR 157, Wis. Admin, Code, and 40 CFR 761.

4.3.3.2 Bulk Suspicious Wastes

Suspicious wastes that are bulk wastes rather than drums, containers, or transformers will be characterized and either managed/treated on site and disposed in ORL or disposed of off-site. Suspicious wastes are defined in **Section 4.3.1**. Bulk wastes include all wastes except electrical transformers and intact, non-empty drums and other containers segregated from the waste.

Initial segregation of bulk suspicious wastes may be accomplished by leaving the wastes in place during characterization after marking the area as a "Non-Excavation Area" until characterization is complete. Bulk suspicious wastes may also be temporarily stockpiled within the BRL footprint or within the ORL lined area in accordance with the AOC policy and/or an approved hazardous waste remediation variance. Stockpiling within the BRL footprint may occur either within the active excavation area or on the final cover over future waste removal areas. Bulk suspicious waste that is staged or left in place while awaiting characterization may be temporarily protected with a tarp or soil cover, depending on the type of waste. Stockpiled suspicious waste that appears to contain VOCs (based on field screening or odor) or that has the potential to create nuisance odors, litter, dust, or other problems will be covered. Temporary stockpiles of otherwise inert materials will not be covered for short-term storage within internally-drained areas of the BRL AOC. Contact water within the BRL AOC will be handled in the same manner as the existing leachate recovered from BRL. Suspicious waste stockpiles on the BRL final cover will be covered to prevent contaminated runoff and protected from storm water run-on with diversion berms as needed. If suspicious waste stockpiles are placed on the BRL final cover without a temporary liner separating the waste from the underlying final cover materials, the upper final cover soil materials will be scraped off with the waste and the underlying final cover soil will be evaluated in accordance with the Soil Management Plan in Section 6.0.

In addition to the measures described above, soil berms will be placed around suspicious waste stockpiles within the BRL or ORL waste areas, to provide a visual separation of these wastes from other waste and to contain contact water. Signage will be used to identify these areas to operators, contractors, and the public to prevent the waste from being inadvertently moved or additional non-suspicious waste being added to the stockpile. Contact water that collects in the bermed area will be managed as leachate.

Based on the site history and waste characterization investigation, the bulk suspicious materials most likely to be encountered are waste or soils containing high concentrations of VOCs. Waste materials encountered during sampling at the facility were generally consistent with typical municipal solid waste. Crushed metal drums and parts of drums were encountered in borings WC-5 and WC-8. Green and yellow paint was observed in boring WC-8. Petroleum, paint and/or solvent-like odors were noted in several borings. As noted in Section 2.1:

- The disposal history indicates primarily municipal solid waste with some possible liquid hazardous waste.
- The waste characterization investigation indicated primarily municipal solid waste with some drums. Petroleum or solvent odors were noted for some bulk municipal waste/daily cover, and most waste samples contained VOCs. The only waste sample exceeding TCLP limits was for waste impacted by paint waste (benzene and lead).
- VOCs are typically the contaminants of concern for landfills of this vintage (accepting waste from 1954 to 1971).

The ROD listed general waste types and sources and mentions disposal at the site of liquid hazardous waste. Based on review of WDNR files, SCS has not identified any further details on waste disposal at the site.

The primary findings from the analysis of two waste samples from each of 12 borings for PCBs total VOCs, and TCLP metals, TCLP VOCs and TCLP SVOCs, as described in the 2020 Waste Characterization Investigation Report include:

- The waste samples met the TCLP limits with the exceptions of benzene and lead in one sample from WC-5.
- PCBs were detected in all but one of the waste samples, with an average concentration
 of 13 mg/kg. Of the 25 waste samples analyzed for PCBs, one exceeded 50 mg/kg, with
 a result of 60 mg/kg in a sample from WC-6.
- PVOCs were widespread, and were at significantly higher concentrations in samples from WC-3, WC-5, and WC-6.
- CVOCs were detected in some waste samples, but were generally at much lower concentrations than PVOCs.

Based on the site history, monitoring data, and characterization performed to date, we anticipate that the primary contaminants of concern will be VOCs, and potentially lead. Based on the WCIR data, the single occurrence of metals in excess of TCLP limits appears to be lead that may have been associated with paint waste. When testing is required for hazardous waste determination, the lab analysis will include volatiles, semi-volatiles, and RCRA metals. Suspicious waste samples will also be analyzed for PCBs. If total contaminant concentrations in solid materials reported as mg/kg are less than 20 times the TCLP regulatory limits in mg/l, then TCLP testing is not required because the TCLP limit can be presumed to be met.

Bulk suspicious wastes that do not show hazardous characteristics and are not otherwise determined to be hazardous or require special treatment will be disposed of in ORL following the typical waste handling procedures previously outlined in **Section 4.3.2**. Bulk suspicious wastes or soils that exceed one or more TCLP, or that show other hazardous characteristics, will be managed as described in **Section 5.0**.

4.4 SOIL CLASSIFICATION AND MANAGEMENT

Soil will be excavated as part of the BRL waste removal and for development of the proposed Southern Unit expansion into the current BRL footprint. Additional soil may be excavated below the BRL waste for the purpose of site remediation. The primary sources of soil that will be excavated during the exhumation process include:

- Final cover: topsoil, rooting zone, and clay.
- Grading layer: biosoil and general fill below final cover and above waste.
- Native soil underlying the waste.

Soil will be segregated by soil type and contaminant levels for beneficial reuse, treatment, and/or disposal. The process for excavating, testing, and classifying soil is detailed in the BRL Property Redevelopment Plan in the Southern Unit POO.

Soil removed during the BRL exhumation and the subsequent excavation to the future expansion sub-base grades will be classified for potential reuse based on field observations and analytical testing. The uppermost soil (soil closest to the waste) at each sample location will be analyzed for VOCs, RCRA metals, and PCBs. Analyses for metals and PCBs may be omitted in deeper soil samples. These parameters are not detected in the shallow soil sample at each location at concentrations exceeding the NR 720 residual contaminant levels (RCLs) or are at concentrations below the Background Threshold Values (BTVs) for metals.

The existing storm water pond south of BRL falls within the footprint of the Southern Unit expansion construction area. The pond will be excavated and/or regraded to achieve the required sub-base grades for the new landfill and reconfigured stormwater pond. Sediment at the bottom of the pond will be evaluated using the same sampling frequency and analytical approach as the soil below the waste, and the sediment will be managed on-site using the same classification system.

Excavated soils and sediment will be classified as Type 1 through 4 based on the contaminant concentrations, with the allowable reuse options defined for each type. The criteria for classification and allowable uses are detailed in the BRL Property Redevelopment Plan included in the POO.

Soils that are identified as hazardous waste will be classified as Type 4 soils. These soils must be treated prior to use or disposal. Treatment of potentially hazardous waste and/or soil is discussed in **Section 5**.

ORL proposes to use targeted excavation to remove as much as 3,000 cubic yards of highly contaminated soil, if encountered below the planned excavation depths. ORL will document the basis for selecting supplemental excavation areas, the areas and depths excavated, and the soil concentrations in the excavated and remaining soil as part of the Waste Removal Documentation Report for each Phase of waste removal.

5.0 BULK SUSPICIOUS WASTE OR SOIL TREATMENT PROCEDURES

No hazardous waste will be placed in ORL. Bulk suspicious waste or soil that is determined to be hazardous but subsequently treated to be non-hazardous must also meet the LDRs prior to disposal in ORL. Bulk suspicious wastes or soils that exceed the TCLP limits will either be treated and (re)tested prior to disposal in ORL or will be transported off site for treatment and/or disposal at a facility licensed to accept the materials.

5.1 TREATMENT APPROACH

If on-site treatment is completed in containers, such as roll-off boxes, then the process is exempt from licensing, as outlined in s. NR 670.001(3)(b)11, Wis. Admin. Code. Although WMWI anticipates treatment may be performed in containers, approval of a remediation variance is being requested in accordance with s. NR 670.079, Wis. Admin, Code, to provide more flexibility due to the unknown quantity of waste or soil requiring treatment and unknown time required to complete treatment.

For treatment that is not performed in a container, excavated materials to be treated will be staged in a lined portion of ORL. Materials for which treatment is expected to be complete within a relatively short time frame (e.g., a few weeks) may also be treated within the BRL footprint. Material will be treated and tested prior to permanent disposal in ORL. Waste or soil that has been determined to be hazardous will be covered with plastic except as needed for treatment and sampling. Treatment

within ORL will occur within a lined area of ORL, at least 30 feet above the leachate collection system.

If petroleum-contaminated waste or soil classified as hazardous waste is encountered during the waste removal, on-site treatment is anticipated to include biotreatment following the same general approach used for the biotreatment of non-hazardous petroleum-contaminated soil at ORL. Any biopile(s) constructed to treat soil or waste exceeding the TCLP limits will be managed and monitored separately from biopiles constructed under the existing biopile processing license.

If waste or soil classified as hazardous waste due to chlorinated solvents, metals, or other parameters is encountered during the removal work, on-site treatment is anticipated to include on-site stockpiling and mixing of the waste and/or soil with stabilization agents to immobilize and degrade suspected contaminants. Depending on the location and timing, it may also be possible to mix the treatment agents in situ prior to excavation.

WMWI anticipates working with a specialty contractor if treatment of CVOCs in the soil/waste is necessary. Potentially applicable treatment agents to chemically degrade the chlorinated solvent contaminants include sodium percarbonate (e.g., RegenOx), sodium persulfate (e.g., PersulfOx), zero-valent iron, or other agents. These materials are readily available; however, some planning and mobilization time will be required between the initial identification of waste or soil requiring treatment and the start of treatment. For the initial treatment event, a mobilization time of approximately 6 to 8 weeks is expected.

After the waste characterization is complete, a preliminary treatment approach will be developed based on the contaminants present, material types, and material quantities. Prior to treatment of waste or soil deemed to be hazardous, WMWI will submit the proposed treatment approach to the WDNR for concurrence. The information submitted to the WDNR for the proposed treatment option will include the following information:

- The material type and quantity to be treated.
- The waste characterization sampling results.
- The treatment option selected and justification for the chosen treatment.
- The location of the storage and treatment area(s).
- The proposed sampling plan for post-treatment confirmation sampling.
- Any potential air management or health and safety issues to consider.

Once the specialty contractor is on site, a field scale pilot test will be performed. If the pilot test is successful, treatment of the remaining waste will be completed. Other similar waste encountered as the waste removal progresses can be treated using the same process without further pilot testing. If the initial pilot test is unsuccessful or a significantly different waste requiring treatment is encountered, then the pilot test process will be repeated using different treatment techniques/agents.

The specialty contractor will provide the treatment agent(s), mix ratio and application services. Mixing may be performed by WMWI, by the waste removal contractor, or by the specialty contractor, depending on the waste treatment quantities and material types. Mixing of small quantities of waste or soil with the treatment agent may be done with an excavator or other standard construction equipment. For larger quantities of soil or soil-like waste materials, mixing with treatment agents may be done with a pug mill or other dedicated mixing equipment.

The treatment schedule will depend on the quantity and characteristics of waste and/or soil requiring treatment, the area available for storage and other operational factors. Treatment may be performed in small batches as material requiring treatment is encountered, or material may be stockpiled for a larger, more efficient treatment event at the end of each waste removal phase.

5.2 TREATMENT STANDARDS

The minimum goal of on-site treatment will be to reduce contaminant concentrations to below the TCLP limits, so that it meets the ORL acceptance limits. For disposal of treated hazardous waste, the RCRA LDR treatment standards will also apply. Based on the site history and known site contaminants, grab sampling to determine whether the LDR treatment standards are met will be limited to the hazardous contaminants identified in the TCLP testing.

The applicable LDR treatment standards will depend on the hazardous constituents present and the type of material being evaluated. For contaminated soil, the alternative LDR treatment standards for contaminated soil in s. NR 668.49, Wis. Admin. Code, will apply. These standards generally require that soil be treated to a concentration less than 10 times the universal treatment standard (UTS), unless treatment to remove 90 percent of the contamination results in a higher standard. For example, the UTS for trichloroethene is 6 mg/kg; therefore, the LDR treatment standard cap for soil is 60 mg/kg.

Based on the site history, age of the waste and observations from the waste characterization borings, most material requiring treatment is expected to be contaminated soil or a mixture of soil with other waste materials, and will be subject to the alternative LDR treatment standards described above.

For suspicious wastes that are not primarily soil and are determined or assumed to be hazardous, the LDR treatment standard under s. NR 668.40, Wis. Admin. Code, is the UTS. These standards would apply in the event that an industrial waste was encountered and was not in a mixture that was primarily soil, such as a distinct sludge layer with a solvent odor.

Examples of the applicable treatment standards for characteristic hazardous waste treated for disposal in ORL include the following:

	TCLP Limit	LDR Treatment Standard – Waste (=UTS)	Alternative LDR Treatment Standard – Soil (=10 X UTS, or 90% reduction)
Benzene	0.5 mg/L	10 mg/kg	100 mg/kg or 90% reduction, whichever is higher
Trichloroethene	0.5 mg/L	6 mg/kg	60 mg/kg or 90% reduction, whichever is higher
Lead	5 mg/L	0.75 mg/L TCLP	7.5 mg/L TCLP

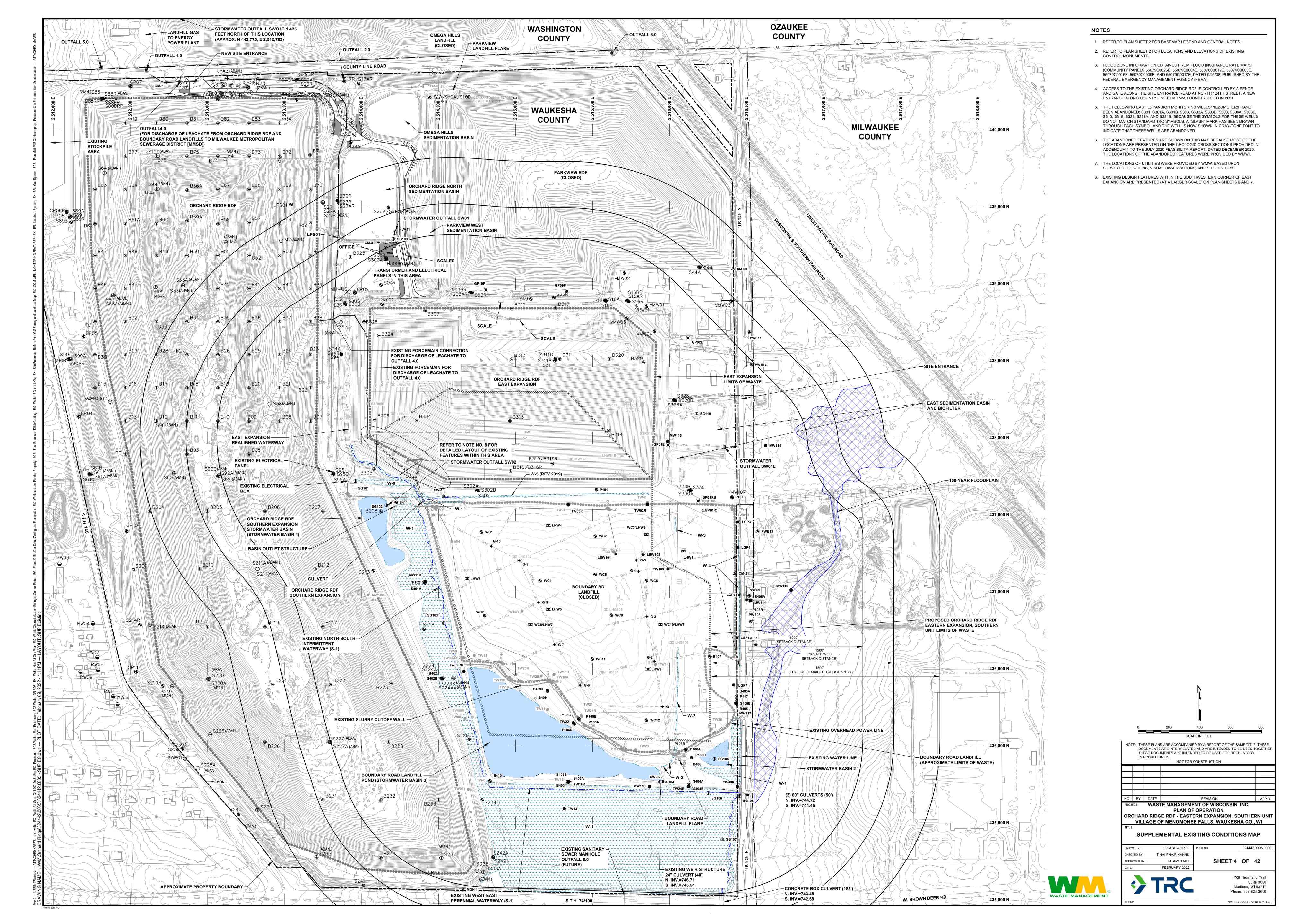
For disposal of treated waste or soil in ORL, both the TCLP limit and the applicable LDR treatment standard must be met. Treated waste or soil materials that remain characteristically hazardous or do not meet the applicable LDR treatment standards will not be accepted for disposal in ORL. These materials will either be subjected to additional treatment or disposed of at an off-site facility licensed to accept them.

No treated hazardous waste can be used as daily cover within the landfill. All treated hazardous waste disposed of in ORL will be covered by the end of the operating day.

5.3 HAZARDOUS WASTE RECORDKEEPING AND REPORTING

Hazardous waste generator recordkeeping and annual reporting will be completed as required under Ch. NR 662, Wis. Admin. Code, based on the quantity of hazardous waste generated, if any.

Prior to placing treated material into ORL, confirmation sample results documenting that the LDR standards have been met will be submitted to the WDNR.


At the end of each phase of the BRL waste excavation, a documentation report will be prepared and submitted to the WDNR. The report will include the following information regarding suspicious and hazardous waste:

- A summary of each type and amount of suspicious material encountered.
- Whether or not the suspicious material was determined to be hazardous waste.
- The treatment method for each type of material treated.
- The post-treatment confirmation sampling results if the material was treated on site.
- The disposal method for each type of material (on-site and off-site).

6.0 REFERENCES

- SCS Engineers, 2019, Waste Characterization Investigation Work Plan, WMWI Boundary Road Landfill, Menomonee Falls, Wisconsin, February 27, 2019.
- SCS Engineers, 2020, Waste Characterization Investigation Report, WMWI Boundary Road Landfill, Menomonee Falls, Wisconsin, May 28, 2020.
- SCS Engineers, 2022, Property Redevelopment Plan, WMWI Boundary Road Landfill, Menomonee Falls, Wisconsin, May, 2022.
- TRC, 2020, Feasibility Report, Orchard Ridge RDF Eastern Expansion, Southern Unit, Village of Menomonee Falls, Waukesha County, Wisconsin, June 2020.
- TRC, 2022, Plan of Operation, Orchard Ridge RDF Eastern Expansion, Southern Unit, Village of Menomonee Falls, Waukesha County, Wisconsin, February 2022.
- Warzyn, 1993, Remedial Investigation Report, Remedial Investigation/Feasibility Study Boundary Road Landfill Site, Waukesha County, Wisconsin, July 2, 1993.

Appendix A Existing Conditions Map

Appendix B

Boundary Road Landfill Waste Characterization Investigation Report – Text, Tables, and Figures

SCS ENGINEERS

May 28, 2020 File No. 25218040.01

Mr. Trevor Nobile Wisconsin Department of Natural Resources 2300 North Dr. Martin Luther King Drive Milwaukee, WI 53212-3128

Mr. David Buser Wisconsin Department of Natural Resources 2300 North Dr. Martin Luther King Drive Milwaukee, WI 53212-3128

Subject: Waste Characterization Investigation Report

WMWI Boundary Road Landfill/Lauer I

Menomonee Falls, Wisconsin

Dear Mr. Nobile and Mr. Buser:

On behalf of Waste Management of Wisconsin, Inc. (WMWI), SCS Engineers (SCS) is submitting the enclosed Waste Characterization Investigation Report for the WMWI Boundary Road Landfill, Menomonee Falls, Wisconsin. The purpose of the investigation described in this report was to characterize the landfill conditions and waste materials as part of the planning process for the proposed exhumation of the Boundary Road Landfill.

If you have any questions about the report, please contact Don Smith by email at dasmith@wm.com or by phone at 262-806-6039.

Sincerely,

Sherren Clark, PE, PG Project Director

SCS Engineers

Thomas J. Karwoski, PG

Project Manager SCS Engineers

TK/Imh/SCC

Distribution: Trevor Nobile, WDNR (e-copy only)

David Buser, WDNR (2 hard copies and e-copy) Sue Fisher, WDNR (hard copy and e-copy) Judy Fassbender, WDNR (e-copy only) Natasha Gwidt, WDNR (e-copy only) Jim Delwiche, WDNR (e-copy only) Michele Norman, WDNR (e-copy only)

Tom Wentland, WDNR (e-copy only)

Mr. Trevor Nobile and Mr. David Buser May 28, 2020 Page 2

Don Smith, WMWI (hard copy and e-copy)
Larry Buechel, WMWI (hard copy and e-copy)
Ryan Baeten, WMWI (hard copy and e-copy)
Brett Coogan, WMWI (e-copy only)
Todd Hartman, WMWI (e-copy only)
Lynn Morgan, WMWI (e-copy only)
Michelle Gale, WMWI (e-copy only)
David Crass, Michael Best & Friederich, LLP (e-copy only)
Stephen Sellwood, TRC (e-copy only)
Joel Schittone, TRC (e-copy only)
Terry Halena, TRC (e-copy only)

Encl. Waste Characterization Investigation Report, WMWI Boundary Road Landfill, May 2020

I:\25218040.01\Deliverables\Waste Invest Report\BRL Waste Invest Rpt Cover Ltr_May2020.docx

Waste Characterization Investigation Report

WMWI Boundary Road Landfill Menomonee Falls, Wisconsin WDNR License #11 EPA ID #WID058735994

Prepared for:

Waste Management of Wisconsin, Inc. W132 N10487 Grant Drive Germantown, Wisconsin 53022

SCS ENGINEERS

25218040.01 | May 2020

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Table of Contents

2eci	ion			Page
Exec	utive \$	Summa	ry	iii
1.0	Intro	duction		1
	1.1	Purpos	se and Scope	1
	1.2	Location	on and Project Information	2
2.0	Field	Investi	gation Methods	2
	2.1	Landfi	ill Gas Evaluation	2
	2.2	Waste	Characterization Borings	3
		2.2.1	Drilling Methods	3
		2.2.2	Soil/Waste Sample Collection and Field Screening	3
		2.2.3	Sample Analysis	4
		2.2.4	Borehole Abandonment	4
	2.3	Leach	ate Evaluationate Evaluation	4
3.0	Investigation Results			5
	3.1	-		
	3.2	Waste	and Soil Sampling	5
		3.2.1	Final Cover	6
		3.2.2	Grading Layer	6
		3.2.3	Waste	6
		3.2.4	Soil Below Waste	7
	3.3	Leach	ate Head Well Monitoring	8
	3.4	Recen	t Routine Environmental Monitoring Results	9
		3.4.1	Landfill Gas Monitoring	9
		3.4.2	Leachate Discharge Monitoring	9
		3.4.3	Groundwater Monitoring	10
		3.4.4	Private Well Monitoring	10
		3.4.5	Surface Water Monitoring	11
4.0	Findings and Next Steps			11
	4.1 Summary of Findings			11
	4.2	Next Steps		
5.0	Refe	eferences		

Tables

Table 1	Landfill Gas Sampling Analytical Results
Table 2	Waste Boring Information
Table 3	Analytical Results - Grading Layer Soil Samples
Table 4	Analytical Results - Waste Sample Total VOC and PCB Analysis
Table 5	Analytical Results - Waste Sample TCLP Analysis
Table 6	Analytical Results - Soil Samples Below Waste
Table 7	Leachate Head Well Elevations
Table 8	Analytical Results - Leachate Head Well Samples
Table 9	Gas Probe Monitoring Data: 2017–2019
Table 10	Landfill Gas Flare Monitoring Data: 2017–2019
Table 11	Leachate/Groundwater Collection Trench Discharge Data: 2017 - 2019
Table 12	Groundwater Monitoring Data: 2017–2019
Table 13	Private Well Monitoring Data: 2017-2019
Table 14	Surface Water Monitoring Data: 2017–2019

Figures

Figure 1	Site Layout
Figure 2	Cross Section Location Map
Figure 3	Cross Section A-A
Figure 4	Cross Section B-B
Figure 5	Analytical Results Map: Grading Layer
Figure 6	Analytical Results Map: Waste
Figure 7	Analytical Results Map: Soil Below Waste

Appendices

Α	WDNR Correspondence		
В	Landfill Gas Laboratory Report		
С	Photograph Log for Waste Borings		
D	Waste Boring and Leachate Head Well Documentation		
	D1 Waste Boring Logs		
	D2 Waste Boring Backfill Forms		
	D3 Leachate Head Well Construction Forms		
	D4 Existing Leachate Head Well Logs		
E	Waste and Soil Sampling Laboratory Reports		
	E1 Waste and Soil Samples from Borings		
	E2 Waste Stockpile Samples		
	E3 Geotechnical Laboratory Report		
F	Leachate Sampling Laboratory Reports		

I:\25218040.01\Deliverables\Waste Invest Report\BRL Waste Invest Rpt_May2020.docx

EXECUTIVE SUMMARY

The purpose of the investigation described in this report was to generally characterize the wastes that may be encountered during the proposed exhumation of the Boundary Road Landfill (BRL), which is owned by Waste Management of Wisconsin, Inc. (WMWI). The exhumation would be performed as part of the development of new landfill airspace in an area that includes BRL. The investigation was conducted voluntarily and followed the approach outlined in the Waste Characterization Investigation Work Plan (SCS Engineers [SCS], 2019) (Work Plan).

The Work Plan was provided to the Wisconsin Department of Natural Resources (WDNR) on April 17, 2019. Representatives of WMWI and WDNR met on April 22, 2019, to discuss the proposed BRL exhumation and the investigation Work Plan. WDNR concurrence with the Work Plan and authorization to proceed was provided in a letter dated May 29, 2019 (Appendix A).

The field activities were completed in July through December 2019 and included the following:

Task	Scope	Schedule
Landfill gas evaluation	Sample 3 gas wells and blower	July 2019
Waste characterization	Drill and sample 12 borings using	August 2019
borings	36-inch bucket auger	
Leachate evaluation	Install 3 vertical leachate head wells	August - December 2019
	Sample 3 new and 5 existing	
	leachate head wells	

Laboratory analysis of landfill gas, soil, waste, and leachate samples was completed following sample collection.

Findings of the field investigation included the following:

- 1. Landfill gas sample analytical results appear to be fairly typical for a closed municipal solid waste (MSW) landfill such as BRL.
- 2. The sequence of materials encountered at each of the 12 borings consisted of soil cover material, a soil grading layer, waste, and underlying native soil.
- 3. The soil grading layer below the cap, which was known to consist of biologically treated petroleum-contaminated soil (biosoil), contained widespread petroleum compounds, but none were at levels exceeding the NR 720 soil standards based on industrial direct contact.
- 4. The thickness of the waste material underlying the grading layer ranged from 10.5 feet to 27 feet. Saturated conditions were generally encountered from 2 to 13 feet above the base of waste.
- 5. The majority of the waste in the borings was consistent with typical municipal solid waste. Varying amounts of construction and demolition debris and plastic sheeting were also encountered. Crushed metal drums and parts of drums were encountered in two borings, and paint waste was encountered in the same two borings (WC-5 and WC-8). Petroleum, paint, and/or solvent-like odors were noted in several borings.

- 6. Findings from the waste sample analysis (two samples per boring) included the following:
 - The waste samples met the Toxicity Characteristic Leaching Procedure (TCLP) limits with the exceptions of benzene and lead in one sample from WC-5.
 - Polychlorinated biphenyls (PCBs) were detected in all but one of the waste samples, with an average concentration of 13 milligrams per kilogram (mg/kg). Of the 25 waste samples analyzed for PCBs, one exceeded 50 mg/kg, with a result of 60 mg/kg in a sample from WC-6.
 - Petroleum volatile organic compounds (VOCs) were widespread, and were at significantly higher concentrations in samples from WC-3, WC-5, and WC-6.
 - Chlorinated VOCs (CVOCs) were detected in some waste samples, but were generally at much lower concentrations than petroleum VOCs (PVOCs).
- 7. Soil samples collected below the waste at the bottom of each boring indicated primarily PVOC impacts, with limited CVOC detections. Because the soil samples were collected with a bucket auger and leachate was present in the boreholes, the VOC results are potentially affected by leachate in the borehole and may not represent undisturbed soil conditions below the landfill.
- 8. Geotechnical testing indicated that most of the soil below the waste is fine-grained, typically lean clay; however, three samples were classified as silty sand or gravel.
- 9. Analytical results from the leachate head well sampling met the Milwaukee Metropolitan Sewerage District (MMSD) discharge limits, except that samples from new well LHW-7 exceeded limits for lead, mercury, zinc, and total PCBs. The total lead results also exceeded the TCLP limit. High lead at this location appears likely to be due to paint wastes observed during drilling.
- 10. Review of the last 3 years of routine environmental monitoring data appears to indicate that the BRL waste has impacted groundwater, but that current impacts are limited.

The findings of the waste characterization investigation will be used to evaluate the feasibility of the proposed BRL waste exhumation project, and to plan waste removal activities. The next steps in the process are anticipated to include (i) preparation of a Feasibility Report for the proposed Orchard Ridge Landfill expansion; (ii) development of a Waste Removal Plan for BRL; (iii) preparation of an Explanation of Significant Differences document (ESD) to update the WDNR issued Record of Decision (ROD); and (iv) closeout of WDNR Contract SF-90-01 for BRL.

1.0 INTRODUCTION

1.1 PURPOSE AND SCOPE

The purpose of the investigation described in this report is to generally characterize the wastes that may be encountered during the proposed exhumation of the BRL, which is owned by WMWI. The exhumation would be performed as part of the development of new landfill airspace in an area that includes BRL. The investigation was conducted voluntarily and followed the approach outlined in the Work Plan (SCS, 2019).

The Work Plan was provided to the WDNR on April 17, 2019. Representatives of WMWI and WDNR met on April 22, 2019, to discuss the proposed BRL exhumation and the investigation Work Plan. WDNR concurrence with the Work Plan and authorization to proceed was provided in a letter dated May 29, 2019 (Appendix A).

The scope of the waste characterization investigation included:

- Collecting landfill gas samples from the existing landfill gas blower and selected landfill gas extraction wells, and analyzing the gas samples for VOCs and sulfur compounds, including hydrogen sulfide.
- Drilling and sampling 12 boreholes through the full thickness of waste material using a
 bucket auger to investigate the types of materials present, extent of degradation,
 moisture content, and leachate levels in the boreholes. Selected soil and waste samples
 were submitted for laboratory analysis.
- Collecting soil samples immediately below the BRL waste from the bucket auger borings, if feasible. The soil samples were collected to investigate impacts, if present, in the soil below the waste because this soil may be excavated to reach proposed base grades as part of redevelopment of the site.
- Installing three new leachate head wells and monitoring the three new wells and five
 existing leachate head wells to characterize the leachate levels and leachate quality
 within the landfill.

More detailed information on the investigation methods is presented in **Section 2.0**, and results are discussed in **Section 3.0**. The results section also summarizes and discusses recent environmental monitoring data for BRL, including groundwater, leachate, and gas monitoring data from the last 3 years of monitoring.

Information on the site background, including site history, known waste types, and known contaminants was provided in the Work Plan (SCS, 2019).

1.2 LOCATION AND PROJECT INFORMATION

Facility Name: Boundary Road Landfill

WDNR Landfill License #: 11

EPA ID #: WID058735994

Facility Address: W124 N8925 Boundary Road

Menomonee Falls, WI 53051

Facility Manager: Larry Buechel, PE

Waste Management of Wisconsin, Inc.

W124 N9355 Boundary Road Menomonee Falls, WI 53051

262-509-5639

Engineering Manager: Don Smith, PE

Waste Management of Wisconsin, Inc.

W132 N10487 Grant Dr. Germantown, WI 53022

262-806-6039

Consultant Contact: Sherren Clark, PE, PG

SCS Engineers 2830 Dairy Drive Madison, WI 53718 608-216-7323

2.0 FIELD INVESTIGATION METHODS

The field investigation included the following elements:

- Landfill gas evaluation
- Waste characterization borings
- Leachate evaluation

The field activities at the site were conducted in accordance with SCS's standard field procedures. Field and analytical methods were based on the requirements of NR 507 and NR 716.13, to the extent that these rules are applicable to the site conditions and the specific goals of this investigation.

2.1 LANDFILL GAS EVALUATION

Landfill gas samples were collected by SCS on July 18, 2019. The landfill gas was monitored at the blower to evaluate the concentrations of VOCs and sulfur compounds that may affect health and safety or indicate odor potential for the waste removal. Samples were also collected from 3 of the 12 existing gas extraction wells in different areas of the landfill: G-5, G-7, and G-10. The gas extraction wells are constructed with horizontal screens near the top of the waste and vertical risers extending through the final cover. Each sample was collected with a glass-lined canister for

laboratory analysis for VOCs (EPA Method TO-15), sulfur compounds (ASTM Method D5504), and fixed gases (EPA Method 3C). The methane, carbon dioxide, oxygen, and balance gas levels were also measured with a field landfill gas meter at the time of the lab sample collection. The landfill gas laboratory report is included in **Appendix B**.

2.2 WASTE CHARACTERIZATION BORINGS

The waste characterization investigation included the drilling and sampling of 12 borings, extending through the entire thickness of waste material and the upper 1 to 2 feet of the underlying soils. The drilling was performed from August 27 through 30, 2019, by Terra Engineering and Construction with oversight by an SCS geologist. The locations of the 12 borings, WC-1 through WC-12, are shown on Figure 1.

2.2.1 Drilling Methods

The boring locations were staked prior to drilling by CQM, Inc. (CQM) based on predetermined survey coordinates. Some of the boring locations were subsequently adjusted by SCS and WMWI as needed to avoid conflicts with landfill gas collection system piping, leachate forcemain, piping, and other utilities or site features. The boring locations and ground surface elevations were resurveyed by CQM after drilling was completed.

The borings from the ground surface through the cap and the waste to the bottom of waste were completed with a track-mounted bucket auger drill. The borehole diameter in waste was approximately 36 inches. The bucket auger was also used to collect samples of the upper 1 to 2 feet of soil directly below the waste.

2.2.2 Soil/Waste Sample Collection and Field Screening

Soil/waste samples from each boring were collected continuously as each boring was advanced through the waste or underlying soil. A portion of recovered material from each augered depth interval was placed in a sealable plastic bag and allowed to equilibrate to ambient temperature for field headspace screening for VOCs using a photoionization detector (PID). Recovered waste materials were photographed at 5-foot intervals, and non-typical waste materials were also photographed. A photographic log is included in **Appendix C**.

Samples for laboratory analysis were selected based on visual observations and field screening. Two waste samples and one underlying native soil sample from each boring were selected for laboratory analysis. A sample of the soil grading layer was also collected from each boring. The "waste" sample was selected from materials within the waste with characteristics suitable for collection and testing (e.g., soil or degraded waste rather than solid wood or metal). Sample analysis is discussed in **Section 2.2.3**.

A boring log was prepared for each borehole, including a description of the waste or soil, soil classification (Unified Soil Classification System [USCS] Visual-Manual Procedure), where appropriate, moisture, odor, and other observations, as well as field headspace readings. Boring logs and boring backfill forms are located in **Appendix D**.

2.2.3 Sample Analysis

Soil and waste samples were submitted to Eurofins TestAmerica, a WDNR-certified laboratory, for analysis. The analytical parameters included VOCs, as proposed in the work plan, plus additional parameters as described below.

Each soil sample was assigned a boring number and sample number, which, when correlated with the boring log, indicates the sampling depth. All samples were labeled with the sample number, date, and time of collection, and chain of custody documentation was prepared.

Soil samples from the grading layer above the waste, which is known to have been constructed using bioremediated petroleum-contaminated soil, were analyzed for VOCs, polynuclear aromatic hydrocarbons (PAHs), gasoline range organics (GRO), and diesel range organics (DRO).

Waste samples were analyzed for VOCs and PCBs. Waste samples were also analyzed for leach test parameters required under WMWI's Special Waste Acceptance Plan for Orchard Ridge, including TCLP metals, VOCs, and semivolatile organic compounds (SVOCs).

Underlying soil samples collected below the waste were analyzed for VOCs. Soil samples were also analyzed by CQM for grain size distribution (sieve only) and Atterberg limits for classification under the USCS. Because the soil samples were collected with a bucket auger and leachate was present in the boreholes, the VOC results are potentially affected by leachate in the borehole and may not represent undisturbed soil conditions below the landfill.

For quality control, one methanol blank was submitted along with soil samples and analyzed for VOCs.

Laboratory analytical reports are included in **Appendix E**.

2.2.4 Borehole Abandonment

Following examination and sampling of the cored waste, the portions of the boreholes below the bottom of waste (typically 1 foot) were backfilled with bentonite. The portions of the boreholes in the waste were backfilled with the excavated waste material and/or granular fill material, except for boreholes WC-3, WC-8, and WC-10, which were converted to leachate head wells as described in **Section 2.3**. Large chunks of debris were not replaced in the borehole. Residual waste was profiled for disposal in the active Orchard Ridge landfill.

The final cover system at the boring was restored to its original thickness and condition following backfilling of the waste, except that bentonite chips were used to replace the compacted clay layer in the final cover system. A safety grate was left in place across the borehole above the bentonite and below the final soil cover, typically 1 foot below the final backfilled grade. Borehole backfill forms are included in **Appendix D2**.

2.3 LEACHATE EVALUATION

To evaluate leachate levels within the waste, liquid level data from the five existing leachate head wells were supplemented with liquid levels from leachate head wells installed in three of the waste characterization borings described in **Section 2.2**. The head well locations are at waste characterization borings WC-3 (LHW-6), WC-8 (LHW-7), and WC-10 (LHW-8).

The three new leachate head wells were constructed similar to the five existing leachate head wells, using 8-inch Schedule 80 PVC with a 0.010-inch slot screen. The screened interval was backfilled with 1-inch clear stone. A bentonite seal was placed above the screened interval. A safety grate was left in place across the borehole below the final soil cover, typically 1 foot below the final backfilled grade. Leachate head well construction forms are included in **Appendix D3**. Logs for the existing leachate head wells (LHW-1 through LHW-5) are provided in **Appendix D4**.

Leachate samples were collected from two of the three new wells and the five existing leachate head wells on September 24, 2019. New leachate head well LHW-6 was dry and no sample was collected. A confirmation sample was collected from new well LHW-7 on December 18, 2019.

In accordance with the Work Plan, samples from the new leachate head wells were analyzed for VOCs, SVOCs, metals, pesticides, PCBs, dioxins and furans, and several other parameters included in the leachate discharge permit issued by MMSD for the WMWI landfill complex. Samples from the five existing leachate head wells were tested for the parameters or parameter groups that were previously detected at more than 10 percent of the MMSD discharge limit.

3.0 INVESTIGATION RESULTS

3.1 LANDFILL GAS SAMPLING

Landfill gas sample analytical results, summarized in **Table 1**, appear to be fairly typical for a closed MSW landfill such as BRL. The samples were analyzed for fixed gases (Method 3C), VOCs (Method TO-15), and sulfur compounds (ASTM D-5504). The landfill gas laboratory report is included in **Appendix B**.

The Method 3C fixed gases analysis indicated that methane content at the blower was 30.1 percent, and methane results for the three gas wells that were sampled ranged from 10.1 percent to 39.9 percent. Oxygen was 1.3 percent at the blower, and ranged from less than 0.2 percent to 2.6 percent at the three wells. There were no detections of carbon monoxide or hydrogen in the Method 3C analysis. These results are typical for a closed landfill with declining landfill gas production.

Several VOCs were detected in Method TO-15 analysis of the gas samples, including petroleum compounds, CVOCs, other solvents, and degradation products. The results show some variability among the four sample locations, but for most parameters the variation is less than an order of magnitude (factor of 10).

The only sulfur compound detected in the ASTM D-5504 analysis of the gas samples was hydrogen sulfide. The detected concentration at the blower was 5.4 parts per million by volume (ppmv), and at the highest well (G-7) was 17.4 ppmv. These concentrations are low compared to those expected at a typical active MSW landfill.

3.2 WASTE AND SOIL SAMPLING

The sequence of materials encountered at each of the 12 borings consisted of soil cover material, a soil grading layer, waste, and underlying native soil. The layer thicknesses are provided in **Table 2** and shown on cross-section **Figures 2** and **3**. Descriptions of the waste and soil materials are provided on the boring logs in **Appendix D1**, and analytical reports are in **Appendix E**.

3.2.1 Final Cover

The landfill cover materials measured during drilling ranged from 4 to 5 feet thick in all 12 of the borings. The cover was designed and installed to be 4 feet thick at all locations. The soil and clay materials identified in the borings were generally consistent with the cap design, which consists of 2 feet of compacted clay overlain by 1.5 feet of rooting zone soil and 6 inches of topsoil.

3.2.2 Grading Layer

The soil grading layer immediately beneath the cap consists of biosoil that was used in the construction of the landfill cover in 1997 and 1998. The biosoil grading layer was added to create a sloped surface on the landfill that promoted improved runoff from precipitation. The measured thickness of the grading layer ranged from 2 feet to 9 feet in the 12 borings.

One grading layer soil sample from each boring was submitted to the analytical laboratory for analysis of VOCs, PAHs, DRO, and GRO. In the VOC analytical results, 10 of the 12 samples had one or more VOC detected at a concentration above an NR 720 Residual Contaminant Level (RCL). In the PAH analytical results, 7 of the 12 samples had one or more PAH compound detected at a concentration above an NR 720 RCL. The analytical results for the grading layer soil are included in **Table 3**.

Findings from the grading layer sample analysis included the following:

- Petroleum compounds were widespread, as expected, with most sample locations having at least one petroleum compound at a concentration exceeding the NR 720 RCL for the groundwater pathway.
- No CVOCs were detected at concentrations exceeding the laboratory's limit of quantitation (LOQ).
- None of the results exceeded the NR 720 industrial direct contact RCLs.
- All DRO results were below 100 mg/kg, and all GRO results were below 500 mg/kg.

Based on these results, at least some of the grading layer soil could potentially be reused in future construction.

3.2.3 Waste

The thickness of the waste material underlying the grading layer ranged from 10.5 feet to 27 feet. Waste descriptions are provided on the logs in **Appendix D1**, and photographs of the waste are in **Appendix C**.

The majority of the waste encountered in each of the borings was generally consistent with typical municipal solid waste. Given the age of the waste, the organic material was highly decayed as expected. Varying amounts of construction and demolition debris were also encountered such as wood, bricks, glass, tile, and insulation. Plastic sheeting was also encountered in several borings. Saturated conditions were generally encountered from 2 to 13 feet above the base of waste. Some material located above the leachate level showed lesser degrees of degradation. In several locations, paper and newsprint was still readable, including dates ranging from the mid-1960s to the early 1970s. Crushed metal drums and parts of drums were encountered in borings WC-5 and WC-8.

Green and yellow paint was observed in boring WC-8. Petroleum, paint, and/or solvent-like odors were noted in several borings.

Two waste samples from each boring were analyzed for PCBs and VOCs, as shown in **Table 4**. Two waste samples from each boring were also analyzed for TCLP metals, VOCs, and SVOCs, as shown in **Table 5**. The waste sample analytical results in **Table 4** were compared to the NR 720 RCLs for the groundwater pathway and the industrial direct contact pathway to identify potential contaminants of concern. The NR 720 RCLs are not applicable to the waste sampling results as compliance limits, and typical municipal and industrial solid waste is expected to have many constituents at levels exceeding RCLs. The comparison to RCLs is intended only for planning and evaluation purposes.

Findings from the waste sample analysis included the following:

- The waste samples met the TCLP limits with the exceptions of benzene and lead in a sample from WC-5.
- PCBs were detected in all but one of the waste samples, with an average concentration
 of 13 mg/kg. Of the 25 waste samples analyzed for PCBs, one exceeded 50 mg/kg, with
 a result of 60 mg/kg in a sample from WC-6.
- PVOCs were widespread, and were at significantly higher concentrations in samples from WC-3, WC-5, and WC-6.
- CVOCs were detected in some waste samples, but were generally at much lower concentrations than PVOCs.

Approximately 40 cubic yards of waste material remained after all of the boings were abandoned. To profile the waste for disposal, three samples were collected from the stockpile and analyzed for PCBs and TCLP metals, VOCs, and SVOCs. The results showed that the waste was non-hazardous. Therefore, the remaining waste was profiled for disposal (WM Profile number 132504WI) and disposed of in the Orchard Ridge Landfill. The TCLP analytical results from the temporary stockpile are included in **Appendix E2**.

3.2.4 Soil Below Waste

Soil samples collected below the waste in each borehole were analyzed for VOCs, as shown in **Table 6**. Because the soil samples were collected with a bucket auger and leachate was present in the boreholes, the VOC results are potentially affected by leachate in the borehole and may not represent undisturbed soil conditions below the landfill.

Findings from the soil sample analysis include the following:

- PVOCs were detected in most samples, with many sample locations having at least one
 petroleum compound at a concentration exceeding the NR 720 RCL for the groundwater
 pathway.
- CVOCs were not detected or were detected at much lower concentrations than PVOCs, with only one CVOC result exceeding the NR 720 RCL for the groundwater pathway.
- Only one result exceeded the NR 720 industrial direct contact RCL.

Geotechnical testing indicated that most of the samples were classified as fine-grained, typically lean clay; however, three samples were classified as silty sand or gravel. Geotechnical laboratory results are provided in **Appendix E3**.

3.3 LEACHATE HEAD WELL MONITORING

Leachate levels measured on September 24, 2019, indicated that the leachate elevation across the site was in the range from 751.6 to 753.9 feet above mean sea level (**Table 7**). These results were very consistent with leachate elevations measured in June 2012 at the then-existing five leachate head wells.

Analytical results from two of the three new leachate head wells and the five existing leachate head wells sampled on September 24, 2019, are summarized in **Table 8**. New leachate head well LHW-6 was dry. LHW-6 was installed in waste characterization boring WC-3, and the bottom of waste at this location was relatively shallow. The bottom-of-well elevation for LHW-6 (752.1 feet above mean sea level) was similar to the leachate elevations measured at other leachate head wells. **Table 8** also includes results from previous sampling at leachate head wells LHW-1 through LHW-5 in May 2013. Leachate levels measured in May 2013 and September 2019 were fairly consistent across the site and consistent between the two events, with all leachate elevation results being within the range from 751.6 to 754.5 feet.

The leachate analytical results are compared in **Table 8** to the MMSD discharge limits under the site's wastewater discharge permit, as an indication of potential concerns for leachate management during waste removal. The results were also compared to the NR 140 groundwater enforcement standards (ESs), as an indication of potential to cause groundwater impacts. Neither the MMSD limits nor the NR 140 limits are applicable to the leachate head well sampling results as current compliance limits; the comparison is for planning and evaluation purposes only.

Leachate results exceeding the MMSD discharge limits were limited to samples from new leachate head well LHW-7. Samples collected from LHW-7 in the initial and/or confirmation sampling events exceeded the MMSD discharge limits for lead, mercury, zinc, and total PCBs. The total lead concentrations for the two sampling events (11.3 milligrams per liter [mg/L] and 29.2 mg/L) also exceeded the TCLP limit for lead (5 mg/L). During the second sampling event, a field-filtered sample was also collected from LHW-7 for dissolved lead analysis. The dissolved lead result (0.0231 mg/L) was less than 0.1 percent of the total lead result, indicating the lead is present in suspended solids, potentially from lead paint waste.

The boring log and photographic log for waste boring WC-8, which was converted to leachate head well LHW-7, indicate waste containing green and yellow paint was encountered in this boring (see WC-8 boring log in **Appendix D1** and photographs 58 and 59 in **Appendix C**).

Based on comparison of the LHW-7 sample results with results from the other seven leachate head wells, the results for samples from LHW-7 appear to represent localized conditions that are significantly different than the typical BRL leachate. The leachate discharge to MMSD, which represents a composite of the leachate within the landfill, meets the MMSD discharge standards.

3.4 RECENT ROUTINE ENVIRONMENTAL MONITORING RESULTS

To provide context for the waste characterization investigation results, the routine monitoring data for BRL were reviewed for the last 3 years. The monitoring results were downloaded from the WDNR's Groundwater and Environmental Monitoring System (GEMS) database for the period from 2017 through 2019. The results are summarized in **Tables 9** through **14** and discussed below.

3.4.1 Landfill Gas Monitoring

Routine monitoring results for the landfill gas probes (**Table 9**) indicate that methane migration is not a current concern for BRL. Seven gas probes are monitored quarterly for percent methane, percent oxygen, and soil gas pressure. In the last 3 years, most of the methane results were zero and none exceeded 0.2 percent.

Routine monitoring results for the landfill gas flare (**Table 10**) indicate that gas production and gas quality are typical for an MSW landfill that has been closed for more than 40 years. For the 3-year period, the average landfill gas flow rate was 91 cubic feet per minute (cfm) and average methane content was 35 percent.

3.4.2 Leachate Discharge Monitoring

The leachate collection system at BRL includes the leachate/groundwater collection trench along the landfill's southern boundary and the three vertical leachate extraction wells installed in the northeast portion of the landfill (LEW-101R, 102R, and 103R). Leachate from these systems is discharged to the sanitary sewer under the MMSD discharge permit for the WMWI landfill complex.

The WDNR-approved monitoring plan for BRL includes monitoring the leachate discharge from the site. The leachate discharge monitoring results are compared to the NR 140 groundwater ESs and preventive action limits (PALs) in **Table 11**; however, these limits do not apply to leachate for compliance monitoring purposes. The leachate samples meet the MMSD discharge limits.

Parameters detected in the leachate/groundwater discharge at a concentration above the NR 140 ES included the following:

- Public health parameters
 - Aluminum
 - Benzene
 - Tetrahydrofuran
- Public welfare parameters
 - Chloride
 - Iron

Each of these parameters exceeded the NR 140 ES in the September 2019 sample, but not in the September 2017 or 2018 samples.

3.4.3 Groundwater Monitoring

Routine groundwater monitoring results from the last 3 years (**Table 12**) indicate some groundwater impacts that appear to be related to BRL, but they are fairly limited in degree and extent.

Each parameter detected in groundwater at a concentration above the NR 140 PAL is listed in the table below. The table also identifies whether the parameter exceeded the NR 140 ES in at least one sample, or only exceeded the PAL, and lists potential sources for each parameter. Groundwater monitoring parameters exceeding a PAL and/or ES in the last 3 years of sampling included the following:

Parameter	PAL or ES Exceedance?	Potential Sources
Public Health Parameters		
Boron	ES	Natural background
Fluoride	PAL	Natural background
VOCs		
Benzene	PAL	BRL
Chloroform	ES	Chlorinated water, chlorination
1,2-Dichloroethane	PAL	BRL
Dichloromethane	ES	Lab contamination
Tetrahydrofuran	PAL	BRL
Public Welfare Parameters		
Chloride	ES	Road salt, BRL
Sulfate	ES	Natural background

Based on the recent monitoring data (**Table 12**), one or more VOCs have been detected in several of the monitoring wells, but few VOCs have been detected above the ES.

The chloroform ES was exceeded only in samples from MW-117, located east of BRL, and chloroform was not detected in the most recent sample from that well (September 2019). Chloroform is a common byproduct of chlorination and can be found in chlorinated water supplies at concentrations similar to those detected in the 2017 and 2018 samples from MW-117.

The dichloromethane ES was exceeded only in a single sample from MW-116, and may be due to laboratory contamination, which is a common source for this parameter.

3.4.4 Private Well Monitoring

Private well monitoring results for the last 3 years (**Table 13**) do not show any apparent impacts from BRL. Parameters detected above the NR 140 PAL and/or ES include arsenic, boron, iron, and manganese. The detected concentrations are fairly consistent across the three wells that are sampled, and appear likely to reflect natural background conditions. There were no PAL exceedances for VOCs. The only VOCs detected were acetone (three wells) and carbon disulfide (one well), and the detections occurred only in the 2018 sampling event, not in the 2017 or 2019 event. Acetone is a common laboratory contaminant.

3.4.5 Surface Water Monitoring

Surface water monitoring results for the last 3 years are presented in **Table 14**. Surface water samples are collected annually in the adjacent surface water drainageway locations upstream (SW01) and downstream (SW02) from BRL (see **Figure 1** for locations). The samples are analyzed for field parameters and VOCs. Only acetone was detected in the upstream SW01 sample. Acetone is a common laboratory contaminant. Detected VOCs in the downstream SW02 sample included acetone, dichloromethane, and toluene. Dichloromethane, which is also a common laboratory contaminant, was detected at a low concentration in the 2018 sample (1.9 micrograms per liter [µg/L]), but was not detected in the 2017 or 2019 samples. All acetone and toluene detections were also at very low concentrations (less than 10 µg/L). Although NR 140 groundwater standards do not apply to the surface water samples, the acetone and toluene results are well below the NR 140 PAL. The surface water sample results indicate no impacts to surface water from BRL.

4.0 FINDINGS AND NEXT STEPS

4.1 SUMMARY OF FINDINGS

Findings of the field investigation included the following:

- 1. Landfill gas sample analytical results appear to be fairly typical for a closed MSW landfill such as BRL.
- 2. The sequence of materials encountered at each of the 12 borings consisted of soil cover material, a soil grading layer, waste, and underlying native soil.
- 3. The soil grading layer below the cap, which was known to consist of biosoil, contained widespread petroleum compounds. Several petroleum compounds were detected at concentrations exceeding the NR 720 soil standards based on the groundwater pathway, but none were at levels exceeding the NR 720 soil standards based on industrial direct contact.
- 4. The thickness of the waste material underlying the grading layer ranged from 10.5 feet to 27 feet. Saturated conditions were generally encountered from 2 to 13 feet above the base of waste.
- 5. The majority of the waste in the borings was consistent with typical municipal solid waste. Varying amounts of construction and demolition debris and plastic sheeting were also encountered. Crushed metal drums and parts of drums were encountered in two borings, and paint waste was encountered in the same two borings. Petroleum, paint, and/or solvent-like odors were noted in several borings.
- 6. Findings from the waste sample analysis (two samples per boring) included the following:
 - The waste samples met the TCLP limits with the exceptions of benzene and lead in one sample from WC-5.
 - PCBs were detected in all but one of the waste samples, with an average concentration
 of 13 mg/kg. Of the 25 waste samples analyzed for PCBs, one exceeded 50 mg/kg, with
 a result of 60 mg/kg in a sample from WC-6.

- PVOCs were widespread, and were at significantly higher concentrations in samples from WC-3, WC-5, and WC-6.
- CVOCs were detected in some waste samples, but were generally at much lower concentrations than PVOCs.
- 7. Soil samples collected below the waste at the bottom of each boring indicated primarily PVOC impacts, with limited CVOC detections. Because the soil samples were collected with a bucket auger and leachate was present in the boreholes, the VOC results are potentially affected by leachate in the borehole and may not represent undisturbed soil conditions below the landfill.
- 8. Geotechnical testing indicated that most of the soil below the waste is fine-grained, typically lean clay; however, three samples were classified as silty sand or gravel.
- 9. Analytical results from the leachate head well sampling met the MMSD discharge limits, except that samples from new well LHW-7 exceeded limits for lead, mercury, zinc, and total PCBs. The total lead results also exceeded the TCLP limit. High lead at this location appears likely to be due to paint wastes observed during drilling.
- 10. Review of the last 3 years of routine environmental monitoring data appears to indicate that the BRL waste has impacted groundwater, but that current impacts are limited. In recent groundwater monitoring, one or more VOCs have been detected in several of the monitoring wells, but only two VOCs have been detected above the NR 140 ES. The chloroform ES was exceeded only in samples from MW-117, located east of BRL, and chloroform was not detected in the most recent sample from that well (September 2019). The dichloromethane ES was exceeded only in a single sample from MW-116, and may be due to laboratory contamination, which is a common source for this parameter. Other detected VOCs, at concentrations below the ES, included benzene, chlorobenzene, 1,2-dichloroethane, and tetrahydrofuran.

4.2 NEXT STEPS

The findings of the waste characterization investigation will be used to evaluate the feasibility of the proposed BRL waste exhumation project, and to plan waste removal activities. The next steps in the process are anticipated to include: (i) preparation of a Feasibility Report for the proposed Orchard Ridge Landfill expansion; (ii) development of a Waste Removal Plan for BRL; (iii) preparation of an Explanation of Significant Differences document (ESD) to update the WDNR issued Record of Decision (ROD); and (iv) closeout of WDNR Contract SF-90-01 for BRL.

5.0 REFERENCES

SCS Engineers, 2019, Waste Characterization Investigation Work Plan, WMWI Boundary Road Landfill, Menomonee Falls, Wisconsin, WDNR License #11, EPA ID #WID058735994, February 27, 2019.

USEPA, 1999, Superfund Preliminary Close Out Report, Boundary Road Landfill, Menomonee Falls, Wisconsin, signed September 28, 1999.

Tables

- 1 Landfill Gas Sampling Analytical Results
- 2 Waste Boring Information
- 3 Analytical Results Grading Layer Soil Samples
- 4 Analytical Results Waste Sample Total VOC and PCB Analysis
- 5 Analytical Results Waste Sample TCLP Analysis
- 6 Analytical Results Soil Samples Below Waste
- 7 Leachate Head Well Elevations
- 8 Analytical Results Leachate Head Well Samples
- 9 Gas Probe Monitoring Data: 2017–2019
- 10 Landfill Gas Flare Monitoring Data: 2017–2019
- 11 Leachate/Groundwater Collection Trench Discharge Data: 2017 2019
- 12 Groundwater Monitoring Data: 2017–2019
- 13 Private Well Monitoring Data: 2017–2019
- 14 Surface Water Monitoring Data: 2017-2019

Table 1. Landfill Gas Sampling Analytical Results WMWI Boundary Road Landfill / SCS Project #25218040.01

Sample ID	Blower	G-5	G-7	G-10
Date Sampled	7/18/2019	7/18/2019	7/18/2019	7/18/2019
Parameter/Analyte	Result	Result	Result	Result
Fixed Gases, EPA 3C (Units: %)		•	•	
Methane (CH₄)	30.1 %	10.1 %	32.8 %	39.9 %
Carbon dioxide (CO ₂)	25.7 %	20.9 %	28.1 %	29.6 %
Oxygen (O ₂)	1.3 %	2.6 %	< 0.2 %	0.4 %
Nitrogen (N ₂)	42.9 %	66.4 %	38.9 %	30.1 %
Carbon monoxide (CO)	< 0.3 %	< 0.3 %	< 0.2 %	< 0.2 %
Hydrogen (H ₂)	< 2.6 %	< 3.2 %	< 2.5 %	< 2.5 %
Volatile Organic Compounds, TO-1	15 (Units: ppb)	V)		
1,1,1-Trichloroethane	<131	<162	<124	<124
1,1,2,2-Tetrachloroethane	<131	<162	<124	<124
1,1,2-Trichloroethane	<131	<162	<124	<124
1,1-Dichloroethane	922	429	<124	225
1,1-Dichloroethene	<131	<162	<124	<124
1,2,4-Trichlorobenzene	<131	<162	<124	<124
1,2,4-Trimethylbenzene	1,640	786	1,150	1,730
1,2-Dibromoethane	<131	<162	<124	<124
1,2-Dichlorobenzene	<131	<162	<124	<124
1,2-Dichloroethane	<131	<162	<124	<124
1,2-Dichloropropane	<131	<162	<124	<124
1,3,5-Trimethylbenzene	744	456	490	699
1,3-Butadiene	<131	<162	<124	<124
1,3-Dichlorobenzene	<131	<162	<124	<124
1,4-Dichlorobenzene	<131	<162	<124	<124
1,4-Dioxane	<131	<162	<124	<124
2,2,4-Trimethylpentane	157	<162	195	<124
2-Butanone (MEK)	1,680	<323	<248	<248
2-Chlorotoluene	<131	<162	<124	<124
2-Hexanone (MBK)	<131	<162	<124	<124
2-Propanol (IPA)	<524	<647	<496	<496
4-Ethyltoluene	581	271	284	474
4-Methyl-2-pentanone (MiBK)	1,300	<162	<124	466
Acetaldehyde	<524	<647	<496	<496
Acetone	2,160	<647	<496	<496
Acrolein	<262	<323	<248	<248
Acrylonitrile	<262	<323	666	<248
Allyl Chloride	<131	<162	<124	<124
Benzene	22,200	11,400	41,400	2,430
Benzyl Chloride (a-Chlorotoluene)	<131	<162	<124	<124
Bromodichloromethane	<131	<162	<124	<124
Bromoform	<131	<162	<124	<124
Bromomethane	<131	<162	<124	<124
Carbon Disulfide	<131	<162	<124	<124

Table 1. Landfill Gas Sampling Analytical Results WMWI Boundary Road Landfill / SCS Project #25218040.01

Sample ID	Blower	G-5	G-7	G-10
Date Sampled	7/18/2019	7/18/2019	7/18/2019	7/18/2019
Parameter/Analyte	Result	Result	Result	Result
Carbon Tetrachloride	<131	<162	<124	<124
Chlorobenzene	217	<162	229	602
Chlorodifluoromethane	1,140	223	1,140	803
Chloroethane	1,670	631	1,040	573
Chloroform	<131	<162	<124	<124
Chloromethane	<131	<162	<124	<124
cis-1,2-Dichloroethene	3,960	417	<124	3,110
cis-1,3-Dichloropropene	<131	<162	<124	<124
Cyclohexane	1,710	1,150	1,020	1,390
Dibromochloromethane	<131	<162	<124	<124
Dichlorodifluoromethane	664	<162	437	511
Dichlorofluoromethane	<131	<162	<124	<124
Dichlorotetrafluoroethane	<131	<162	<124	<124
Ethanol	<524	<647	<496	<496
Ethyl Acetate	<131	<162	<124	<124
Ethylbenzene	26,000	16,100	12,500	25,800
Heptane	7,480	4,080	5,270	4,960
Hexachlorobutadiene	<131	<162	<124	<124
Hexane	9,340	5,900	10,200	7,250
Isopropylbenzene (Cumene)	1,010	571	553	814
m & p-Xylenes	86,100	65,000	43,600	88,000
Methanol	<1,311	<1,617	<1,241	<1,239
Methyl Methacrylate	<131	<162	<124	<124
Methyl Tert Butyl Ether (MTBE)	<131	<162	<124	<124
Methylene Chloride (DCM)	182	<162	<124	<124
Naphthalene	<131	<162	<124	<124
o-Xylene	12,100	3,320	4,060	11,000
Propene	4,330	1,710	3,820	2,760
Styrene	<131	<162	<124	<124
Tert Butanol (TBA)	<262	<323	<248	<248
Tetrachloroethene (PCE)	<131	<162	<124	<124
Tetrahydrofuran	<131	<162	<124	<124
Toluene	28,800	5,740	1,360	12,100
trans-1,2-Dichloroethene	<131	<162	<124	<124
trans-1,3-Dichloropropene	<131	<162	<124	<124
Trichloroethene (TCE)	293	<162	<124	<124
Trichlorofluoromethane	158	<162	<124	<124
Trichlorotrifluoroethane	<131	<162	<124	<124
Vinyl Acetate	<262	<323	<248	<248
Vinyl Bromide	<131	<162	<124	<124
Vinyl Chloride	3,000	870	<124	3,650

Table 1. Landfill Gas Sampling Analytical Results WMWI Boundary Road Landfill / SCS Project #25218040.01

Sample ID	Blower	G-5	G-7	G-10
Date Sampled	7/18/2019	7/18/2019	7/18/2019	7/18/2019
Parameter/Analyte	Result	Result	Result	Result
Reduced Sulfur Compounds, ASTM	D-5504 (Units	: ppmV)		
2-Methylthiophene	< 0.131	< 0.162	< 0.124	< 0.124
3-Methylthiophene	< 0.131	< 0.162	< 0.124	< 0.124
Bromothiophene	< 0.131	< 0.162	< 0.124	< 0.124
Carbon Disulfide	< 0.131	< 0.162	< 0.124	< 0.124
COS / SO2	< 0.131	< 0.162	< 0.124	< 0.124
Diethyl Disulfide	< 0.131	< 0.162	< 0.124	< 0.124
Diethyl Sulfide	< 0.131	< 0.162	< 0.124	< 0.124
Dimethyl Disulfide	< 0.131	< 0.162	< 0.124	< 0.124
Dimethyl Sulfide	< 0.131	< 0.162	< 0.124	< 0.124
Ethyl Mercaptan	< 0.131	< 0.162	< 0.124	< 0.124
Hydrogen Sulfide	5.40	< 0.162	17.4	5.58
iso-Butyl Mercaptan	< 0.131	< 0.162	< 0.124	< 0.124
Isopropyl Mercaptan	< 0.131	< 0.162	< 0.124	< 0.124
Methyl Mercaptan	< 0.131	< 0.162	< 0.124	< 0.124
Methylethylsulfide	< 0.131	< 0.162	< 0.124	< 0.124
n-Butyl Mercaptan	< 0.131	< 0.162	< 0.124	< 0.124
n-Propyl Mercaptan	< 0.131	< 0.162	< 0.124	< 0.124
sec-Butyl Mercaptan / Thiophene	< 0.131	< 0.162	< 0.124	< 0.124
tert-Butyl Mercaptan	< 0.131	< 0.162	< 0.124	< 0.124
Tetrahydrothiophene	< 0.131	< 0.162	< 0.124	< 0.124
Thiophenol	< 0.131	< 0.162	< 0.124	< 0.124
Total Reduced Sulfur	5.40	< 0.162	17.4	5.58

Bold values exceed the limit of detection.

Created by: JSN 8/20/19 Checked by: SCC, 11/27/19

I:\25218040.01\Deliverables\Waste Invest Report\Tables\[Table 1_Boundary Rd Gas Sample Results.xlsx]Table

Table 2. Waste Boring Information
WMWI Boundary Road Landfill / SCS Project #25218040.01

	Coo	rdinates	Ground	Depth to Base of	Bottom of Waste	Lay	yer Thickness (ft)	
Boring Number	Northing	Easting	Elevation	Waste (ft)	Elevation	Final Cover	Grading Layer	Waste
WC-1	437,389.12	2,514,778.94	775.32	20.5	755	5	5	10.5
WC-2	437,362.48	2,515,517.11	773.09	27	746	5	3	19
WC-3	437,372.01	2,515,849.34	774.13	23	751	4	4	15
WC-4	437,072.41	2,515,159.18	787.63	40	748	5	9	26
WC-5	437,112.65	2,515,516.83	781.89	39	743	4	9	26
WC-6	437,072.39	2,515,849.15	776.24	26	750	4	4	18
WC-7	436,845.52	2,514,799.38	771.32	27	744	4	6	17
WC-8	436,786.66	2,515,097.03	775.09	33	742	4	9	20
WC-9	436,848.10	2,515,621.86	781.60	33	749	5	7	21
WC-10	436,787.89	2,515,940.64	770.45	21	749	5	2	14
WC-11	436,564.11	2,515,497.26	774.33	37	737	4	6	27
WC-12	436,166.69	2,515,849.53	764.94	29	736	4	4	21
Average					746	4.4	6	20

Created by: TK 9/12/19 Revised by: BSS, 9/12/19

Checked by: BSS, 9/12/19; SCC, 9/12/2019

I:\25218040.01\Deliverables\Waste Invest Report\Tables\[Table 2_Waste Boring Summary.xlsx]Sheet1

Method	Analyte	Unit	WC1S2	WC2S2 6	WC3S2	WC4S2	WC5S2 6.5	WC6S2 5	WC7S2	WC8S2	WC9S2	WC10S2	WC11S2	WC12S2 5	NR 720 Groundwater Pathway RCLs with a Wisconsin- Default Dilution Factor of 2	NR 720 Industrial Direct Contact RCLs
Depth Date			Ü						_		8/28/2019	Ü	Ü	8/28/2019		
	ganic Compounds (VOCs)															
	1,1,1,2-Tetrachloroethane	ug/Kg	<60 *	<120	<29	<33 *	<27 *	<32	<57	<29	<29	<34	<28	<30	53.4	12,300
	1,1,1-Trichloroethane	ug/Kg	<50	<96	<24	<27	<22	<27	<47	<24	<24	<28	<23	<24	140	640,000
	1,1,2,2-Tetrachloroethane	ug/Kg	<52	<100	<25	<28	<23	<28	<50	<25	<25	<29	<24	<26	0.20	3,600
	1,1,2-Trichloroethane	ug/Kg	<46 *	<89	<22	<25 *	<20 *	<25	<44	<22	<22	<26	<22	<23	3.2	7,010
	1,1-Dichloroethane	ug/Kg	<54 *	<100	<25	<29 *	<24 *	<29	<51	<26	<25	<30	<25	<26	483	22,200
	1,1-Dichloroethene	ug/Kg	<51	<98	<24	<28	<22	<27	<49	<25	<24	<29	<24	<25	5.0	1,190,000
	1,1-Dichloropropene	ug/Kg	<39	<75	<18	<21	<17	<21	<37	<19	<18	<22	<18	<19	NE	NE 034 000
	1,2,3-Trichlorobenzene	ug/Kg	<60	<120	<28	<32	<26	<32 ^c *	<57	<29	<28	<34	<28	<29 ^c *	NE 50	934,000
8260B	1,2,3-Trichloropropane	ug/Kg	<54 *	<100	<26	<29 *	<24 *	<29	<52	62 J	<26	<30	<25	<27	52	109
	1,2,4-Trichlorobenzene	ug/Kg	<45	<86	<21	<24	<20	<24	<43	<22	<21	<25	<21	<22	408	113,000
	1,2,4-Trimethylbenzene	ug/Kg	78 J *	8,700	75	250 *	64 *	140	9,700	52 J	530	120	840	25 J	1,379 (1)	219,000
8260B	1,2-Dibromo-3-Chloropropane	ug/Kg	<260 *	<500	<120	<140 *	<110 *	<140	<250	<130	<120	<150	<120	<130	0.20	92
8260B	1,2-Dibromoethane	ug/Kg	<51 *	<97	<24	<27 *	<22 *	<27	<48	<24	<24	<28	<24	<25	0.028	221
	1,2-Dichlorobenzene	ug/Kg	<44 *	180 J	<21	<24 *	<19 *	<23	<42	<21	<21	<25	<20	<22	1,168	376,000
8260B	1,2-Dichloroethane	ug/Kg	<51 *	<99	<24	<28 *	<23 *	<27	<49	<25	<24	<29	<24	<25	2.8	2,870
	1,2-Dichloropropane	ug/Kg	<56 *	<110	<27	<30 *	<25 *	<30	<53	<27	<26	<31	<26	<28	3.3	15,000
	1,3,5-Trimethylbenzene	ug/Kg	<50 *	2,800	<24	98 *	<22 *	83	280 *	<24	62 *	74	270 *	<24	1,379 (1)	182,000
	1,3-Dichlorobenzene	ug/Kg	<52	<100	<25	<28	<23	<28	<50	<25	<25	<29	<25	<26	1,153	297,000 1,490,000
	1,3-Dichloropropane	ug/Kg	<47	<91	<22	<26	<21	<25	<45	<23	<22	<27	<22	<23	NE 144	
	1,4-Dichlorobenzene	ug/Kg	<48 *	<92	<23	<26 *	<21 *	<25	<45	<23	<23	<27	<22	<23	NE	16,400 191,000
	2,2-Dichloropropane	ug/Kg	<58	<110	<28	<31	<26	<31	<55	<28	<27	<33	<27	<29	NE NE	907.000
	2-Chlorotoluene	ug/Kg ug/Kg	<41 * <46 *	<79 <88	<19 <22	<22 * <25 *	<18 * <20 *	<22 <24	<39 <44	<20 <22	<19 <22	<23 <26	<19 <21	<20 <23	NE NE	253,000
	4-Chlorotoluene	0 0	<46 **	-88 1.300	<22 20	<25 " 170 *	<20 " 55 *	<24 710	<44 31	<22 11 J	<22 27	<26 700		<23 29	5.1	7.070
	Benzene	ug/Kg		,						_			<8.9		NE	679,000
	Bromobenzene	ug/Kg ug/Kg	<47 * <56 *	<90 <110	<22 <27	<25 * <30 *	<20 * <25 *	<25 <30	<44 <53	<22 <27	<22 <26	<26 <31	<22 <26	<23 <28	NE NE	906.000
	Bromochloromethane	0	<56 <49 *	<94	<27	<26 *	<25 <21 *	<30 <26	<53 <46	<27	<23	<27	<23	<24	0.30	1.830
	Bromodichloromethane Bromoform	ug/Kg ug/Kg	<63	<120	<30	<34	<28	<34	<60	<31	<30	<36	<30	<31	2.3	113,000
	Bromomethane	ug/Kg	<100	<200	<30 <49	<56	<46	<56	<99	<50	<49	<59	< 30 < 49	<51 <51	5.1	43,000
	Carbon tetrachloride	ug/Kg	<50	<97	<24	<27	<22	<27	<48	<24	<24	<28	<24	<25	3.9	4,030
	Calbon tetrachionde Chlorobenzene	ug/Kg	<50 <51 *	<97 <97	<24	<27 *	<22 *	<27	<48	<24	<24	<28	<24	<25	136	761.000
	Chloroethane	ug/Kg	<66	<130	<31	<36	<29	<35	<63	<32	<31	<37	<31	<32	227	2,120,000
	Chloroform	ug/Kg	<48 *	<93	<23	<26 *	<21 *	<26	<46	<23	<23	<27	<23	<24	3.3	1,980
8260B	Chloromethane	ug/Kg	<42	<81	<20	<23	<18	<22	<40	<20	<20	<24	<20	<21	16	669.000
	cis-1,2-Dichloroethene	ug/Kg	<53	<100	<25	<29	<23	<28	<51	<26	<25	30 J	<25	<26	41	2,340,000
	cis-1,3-Dichloropropene	ug/Kg	<54 *	<100	<26	<29 <29 *	<23 <24 *	<29	<52	<26	<26	<31	<25	<27	NE NE	1,210,000
	Dibromochloromethane	ug/Kg	<64 *	<120	<30	<34 *	<28 *	<34	<61	<31	<30	<36	<30	<31	32	38,900
	Dibromomethane	ug/Kg	<35 *	<68	<17	<19 *	<16 *	<19	<34	<17	<17	<20	<17	<17	NE	143,000
	Dichlorodifluoromethane	ug/Kg	<35 <88	<170	<42	<48	<39	<47	<34 <84	<43	<42	<50	<41	<43	3.086	530,000
	Ethylbenzene	ug/Kg	250 *	32,000	<11	210 *	62 *	1.800	1,100	47	140	1.000	210	39	1,570	35,400
	Hexachlorobutadiene	ug/Kg	<58	<110	<28	<31	<26	<31	<55	<28	<28	<33	<27	<29	NE	7.190
	Isopropyl ether	ug/Kg	<36	<69	<17	<19	<16	<19	<34	<17	<17	<20	<17	<18	NE NE	2,260,000
	lsopropylbenzene	ug/Kg	370	1.900	<24	140	<22	120	690	<24	38 J	98	<24	<25	NE NE	268,000
	Methyl tert-butyl ether	ug/Kg	<52 *	<99	<24	<28 *	<23 *	<27	<49	<25	<24	<29	<24	<25	27	282,000
	Methylene Chloride	ug/Kg	<210	<410	<100	<120	<94	<110	<200	<100	<100	<120	<100	<100	2.6	1.150.000
	Naphthalene	ug/Kg	180 *	1.700	39 J	290 *	68 *	120	2.400	56 J	680	32 J	46 J	<22	658	24,100

Method Depth	Analyte	Unit	WC1S2	WC2S2	WC3S2	WC4S2	WC5S2 6.5	WC6S2	WC7S2	WC8S2	WC9S2	WC10S2	WC11\$2	WC12S2	NR 720 Groundwater Pathway RCLs with a Wisconsin- Default Dilution Factor of 2	NR 720 Industrial Direct Contact RCLs
Depin			8/27/2019	Ü	8/29/2019	8/27/2019	8/27/2019	8/28/2019	8/28/2019	8/29/2019	8/28/2019	8/29/2019	8/28/2019	8/28/2019		
8260B	n-Butylbenzene	ug/Kg	<51	<98	<24	<27	<22	<27	3,000	<24	<24	<29	<24	<25	NE	108.000
8260B	N-Propylbenzene	ug/Kg	720	1.800	<26	280	32 J	33 J	3,400	<26	150	<30	28 J	<27	NE NE	264,000
8260B	p-Isopropyltoluene	ug/Kg	<47	1,300	<22	32 J	<21	<25	390	<23	55 J	<27	26 J	<23	NE	162,000
8260B	sec-Butylbenzene	ug/Kg	410 *	260	<25	130 *	27 J *	<28	860 *	<25	58 J *	<29	<24 *	<26	NE	145,000
8260B	Styrene	ug/Kg	<51 *	<97	<24	<27 *	<22 *	<27	<48	<24	<24	<28	<24	<25	220	867,000
8260B	tert-Butylbenzene	ug/Kg	<52 *	<100	<25	<28 *	<23 *	<28	<50 *	<25	<25 *	<29	<24 *	<26	NE	183,000
8260B	Tetrachloroethene	ug/Kg	<48	<93	<23	<26	<21	<26	<46	<23	<23	<27	<23	<24	4.5	145,000
8260B	Toluene	ug/Kg	19 J	12,000	12 J	64	78	43	32	26	14 J	130	22	< 9.5	1,107	818,000
8260B	trans-1,2-Dichloroethene	ug/Kg	<46	<88	<22	<25	<20	<24	<44	<22	<22	<26	<21	<23	63	1,850,000
8260B	trans-1,3-Dichloropropene	ug/Kg	<47 *	<91	<22	<26 *	<21 *	<25	<45	<23	<22	<27	<22	<23	NE	1,510,000
8260B	Trichloroethene	ug/Kg	<21	<41	<10	<12	< 9.4	<11	<20	<10	<10	15 J	<10	<11	3.6	8,410
8260B	Trichlorofluoromethane	ug/Kg	<56	<110	<27	<30	<25	<30	<53	<27	<26	<31	<26	<28	4,478	1,230,000
8260B	Vinyl chloride	ug/Kg	<34	<66	<16	<18	<15	<18	<33	<17	<16	<19	<16	<17	0.10	2,080
8260B	Xylenes, Total	ug/Kg	130	140,000	51	430	220	5,100	600	81	170	3,700	820	99	3,960	260,000
VOC Gro	oup Totals	•									-					
	Total PVOC	ug/Kg	693	198,500	197	1,512	547	7,996	14,143	273	1,623	5,756	2,208	192		
	Total CVOC	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	45	ND	ND		
	Total Other VOCs	ug/Kg	1,500	5,440	ND	582	59	153	8,340	62	301	98	54	ND		
	Total VOCs	ug/kg	2,193	203,940	197	2,094	606	8,149	22,483	335	1,924	5,899	2,262	192		
	ear Aromatic Hydrocarbons (PAI	,														_
8270D	1-Methylnaphthalene	ug/Kg	1,600	84	< 9.4	310	110	24 J	290	14 J	530	< 9.9	< 9.4	12 J	NE	72,700
8270D	2-Methylnaphthalene	ug/Kg	1,100	130	<7.1	220	56 J	32 J	110	7.5 J	290	<7.5	<7.1	24 J	NE	3,010,000
8270D	Acenaphthene	ug/Kg	900	34 J	<7.0	78	71	62	74	30 J	<6.5	41	<6.9	<6.7	NE	45,200,000
8270D	Acenaphthylene	ug/Kg	<5.0	19 J	<5.1	19 J	<4.8	<5.1	<4.9	<5.1	<4.8	26 J	<5.1 F1	<4.9	NE	NE
8270D	Anthracene	ug/Kg	800	79	<6.5	130	70	110	200	31 J	51	140	<6.4	<6.2	196,949	100,000,000
8270D	Benzo[a]anthracene	ug/Kg	1,200	190	<5.2	290	160	320	570	44	110	500	<5.2	< 5.0	NE	20,800
8270D	Benzo[a]pyrene	ug/Kg	1,100	220	<7.5	280	150	300	480	43	110	620	<7.4	<7.2	470	2,110
8270D	Benzo[b]fluoranthene	ug/Kg	1,300	270	<8.3	360	190	400	660	54	100	600	<8.3	<8.0	478	21,100
8270D	Benzo[g,h,i]perylene	ug/Kg	410	110	<12	170	87	120	100	30 J	35 J	230	<12 F1	<12	NE	NE 211 222
8270D	Benzo[k]fluoranthene	ug/Kg	420	120	<11	200	12 J	270	350	21 J	150	450	<11	<11	NE	211,000
8270D	Chrysene	ug/Kg	1,300	250	11 J	370	190	330	560	55	120	620	<10	<10	144	2,110,000
8270D	Dibenz(a,h)anthracene	ug/Kg	120	27 J	<7.5	35 J	20 J	32 J	<7.1	8.4 J	<7.0	18 J	<7.4	<7.2	NE 00.070	2,110
8270D 8270D	Fluoranthene	ug/Kg	2,700	420	<7.2 ^c	700	370	810 ^c	1,300 ^c	120	250 ^c	980	<7.1 ^c	<6.9 ^c	88,878 14,830	30,100,000
8270D 8270D	Fluorene	ug/Kg	1,000	42	<5.4 ^c	80	68	59 130	110	38 25 J	130	42 230	< 5.4	< 5.2	14,830 NE	
8270D 8270D	Indeno[1,2,3-cd]pyrene	ug/Kg ug/Kg	390 150	77 970	<10	140	74 60	65	180 70		45 69	230 15 J	<9.9 F1	<9.6 39	658	21,100 24,100
8270D 8270D	Naphthalene	ug/Kg ug/Kg	3,200	260	<6.0 <5.4	130 370	420	450	740	<5.9 96	540	15 J 470	6.3 J <5.3	<5.2	NE NE	24,100 NE
8270D 8270D	Phenanthrene Pyrene	ug/Kg	2,800	360	<5.4 14 J	570	350	1,800	2.500	110	470	770	< 5.3 < 7.6 F1	<5.2	54,546	22.600.000
02/00	Total PAHs	ug/kg	20.490	3.662	25	4.452	2.458	5,314	8,294	727	3.000	5.752	6	88	54,540	

Method	Analyte	Unit	WC1S2	WC2S2	WC3S2	WC4S2	WC5S2	WC6S2	WC7S2	WC8S2	WC9S2	WC10S2	WC11S2	WC12S2	NR 720 Groundwater Pathway RCLs with a Wisconsin- Default Dilution Factor of 2	NR 720 Industrial Direct Contact RCLs
Depth			5	6	6	10	6.5	5	6	6	7	5	5	5		
Date			8/27/2019	8/27/2019	8/29/2019	8/27/2019	8/27/2019	8/28/2019	8/28/2019	8/29/2019	8/28/2019	8/29/2019	8/28/2019	8/28/2019		
Petroleum	Organics				-	-	-	-	-			-	-	-	•	
WI-DRO	WI Diesel Range Organics	mg/Kg	1.6 J	85	<1.4	1.5 J	<1.3	3.2 J	17	<1.6	43	2.3 J	<1.6	<1.3	NE	NE
WI-GRO	WI Gasoline Range Organics	ug/Kg	220,000	380,000	1,300 J	92,000	32,000	11,000	490,000	59,000	81,000	10,000	6,400	2,900	NE	NE
WI-GRO	WI Gasoline Range Organics	mg/kg	220	380	1.3 J	92	32	11	490	59	81	10	6.4	2.9	NE	NE
Physical	•	•				•		•	•			•			•	
Moisture	Percent Moisture	%	13.8	11.4	14.7	16.5	10.3	16.7	11.6	14.8	11.9	20.1	14.0	12.6		
Moisture	Percent Solids	%	86.2	88.6	85.3	83.5	89.7	83.3	88.4	85.2	88.1	79.9	86.0	87.4		

Laboratory Notes:

- * LCS or LCSD is outside acceptance limits
- ^c CCV Recovery is outside acceptance limits.
- J Reported value was between the limit of detection and the limit of quantitation.
- F1 MS and/or MSD Recovery is outside acceptance limits.

Abbreviations:

mg/kg = milligrams per kilogram or parts per million (ppm) ug/kg = micrograms per kilogram or parts per billion (ppb) RCL = Residual Contaminant Level NE = No Standard Established

-- = Not Applicable

Bold values exceed the limit of detection.

50 Yellow highlighted values exceed NR 720 RCLs for the industrial direct contact pathway and the groundwater pathway (no exceedances for these results)

370 Blue highlighted values exceed NR 720 RCL for the groundwater pathway

Total PVOC includes petroleum VOCs benzene, ethylbenzene, toluene, xylenes, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, naphthalene, and methyl-tert-butyl ether. Total CVOC includes all chlorinated alkanes and alkenes.

Total Other VOC includes all other compounds, such as additional petroleum-related VOCs, ketones, and other halogenated compounds.

RCL Notes:

NR 720 RCLs updated as of December 2018.

(1) 1,2,4- and 1,3,5-Trimethylbenzenes combined total = 1,378.7

I:\25218040.01\Deliverables\Waste Invest Report\Tables\[Table 3-6_Soil_Waste.xlsx]Grading Layer

Table 4. Analytical Results - Waste Sample Total VOC and PCB Analysis Waste Characterization Investigation, Boundary Road Landfill / SCS Engineers Project #25218040.01

NOTE: The waste sample analytical results in Table 4 were compared to the NR 720 RCLs for the groundwater pathway and the industrial direct contact pathway to identify potential contaminants of concern. The NR 720 RCLs are not applicable to the waste sampling results as compliance limits, and typical municipal and industrial solid waste is expected to have many constituents at levels exceeding RCLs. The comparison to RCLs is intended only for planning and evaluation purposes.

			results as	сотприатте	e limits, an	а суртоат г	namo.para.				2100 10 110	· · · · · · · · · · · · · · · · · · ·	30110111401111	41.010.0		10201 1110 0	-отпратьот	. 10 11025 15	, ii itoriaoa	oy .o. p	arii iii g arii		5.1 Pu. Pos							
Method Depth	Analyte	Unit	WC1S3	WC1S4	WC2S3	WC2S4	WC3S3 15	WC3S4 20	WC4S4 24	WC4S5 28	WC5S4	WC5S6 33	WC5S6S5 27 - 33	WC6S3	WC6S4 15	WC7S3	WC7S4	WC8S3	WC8S4 25	WC9S4 20	WC9S5 26	WC10S3	WC10S4	WC11S3S4 20 - 24	WC11S4 \\ 24	WC11 S 5	WC12S3	WC12S4 15	NR 720 Groundwater Pathway RCLs with Wisconsin- Default Dilution Factor of 2	NR 720 Industrial Direct Contact RCLs
Date			8/27/19	8/27/19	8/27/19	8/27/19	8/29/19	8/29/19	8/27/19	8/27/19	8/27/19	8/27/19	8/29/19	8/28/19	8/28/19	8/28/19	8/28/19	8/29/19	8/29/19	8/28/19	8/28/19	8/29/19	8/29/19	8/29/19	8/28/19	8/28/19	8/28/19	8/28/19		
8082A	rinated Biphenyls (PCBs) PCB-1016	ug/Kg	<74	<650	<100	<180	<77	<390	<930	<180	<1700		<800	<350	<4100	<310	<350	<69	<170	<150	<160	<420	<410	<1700		<200	<90	<75		28000
8082A	PCB-1221	ug/Kg	<92	<810	<120	<230	<96	<490	<1200	<230	<2200		<990	<440	<5100	<390	<440	<86	<210	<180	<200	<520	<500	<2200		<240	<110	<93		883
8082A	PCB-1232	ug/Kg	<91	<800	<120	<230	<95	<480	<1100	<220	<2100		<980	<440	<5100	<380	<430	<85	<210	<180	<190	<510	<500	<2100		<240	<110	<92		792
8082A 8082A	PCB-1242 PCB-1248	ug/Kg ua/Ka	2,800 <82	12,000 <720	490 <110	5,000 <200	550 <86	6,300 <440	16,000 <1000	6,200 <200	35,000 <1900		<740 <890	3,800 <390	<3800 <4600	<290 <350	10,000 <390	2,400 <77	3,800 <190	2,800 <160	4,500 <170	5,300 <460	<380 <450	44,000 <1900		8,800 <220	890 <100	1,000 <84		972 975
8082A	PCB-1254	ug/Kg	1,400	<400	750	2,900	<47	3,500	<570	4,200	<1100	==	20,000	<220	<2500	<190	<220	2,100	2,000	1,700	3,500	3,700	6,200	<1100		1,900	310	560		988
8082A	PCB-1260 Total PCBs	ug/Kg ua/Ka	<100 4.200	<900 12.000	<140 1,240	<250 7.900	<110 550	<550 9.800	<1300 16.000	<250 10.400	<2400 35,000		<1100 20.000	7,500 11,300	60,000	<430 ND	<490 10.000	<96 4.500	<230 5.800	<200 4.500	<220 8.000	<580 9.000	<560 6,200	<2400 44.000		<270 10.700	<130 1,200	<100 1.560	9.4	100 967
	Total PCBs	mg/Kg		12,000	1,240	7,900	0.55	9,800		10,400	35,000		20,000	11,300	60	ND	10,000	4,500	5.8	4,500	8	9,000	6.2	44,000		10,700	1,200	1,560	0.0094	0.967
	Organic Compounds (VOCs)	, .,																						1						
8260B 8260B	1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	ug/Kg ug/Kg	<22 * <18	<87 * <71	<450 * <370	<440 * <360	<160 <130	<150 <130	<23 * 35 J	<23 * <19	<2700 * <2200	<2400 * <2000		<460 <380	<4100 <3300	<78 <64	<140 <120	<31 <26	<170 <140	<310 <260	<310 <260	<83 <68	<810 <670		<54 <44	<54 <45	<31 <26	<34 <28	53 140	12,300 640.000
8260B	1,1,2,2-Tetrachloroethane	ug/Kg ug/Kg	<19	<75	<390	<380	<140	<130	<20	<20	<2300	<2100	<u> </u>	<400	<3500	<67	<120	<27	<150	<270	<270	<71	<700		<46	<47	<27	<29	0.20	3,600
8260B	1,1,2-Trichloroethane	ug/Kg	<17 *	<66 *	<350 *	<340 *	<120	<120	<17 *	<18 *	<2000 *	<1800 *		<350	<3100	<60	<110	<24	<130	<240	<240	<63	<620		<41	<41	<24	<26	3.2	7,010
8260B 8260B	1,1-Dichloroethane 1,1-Dichloroethene	ug/Kg ug/Kg	<20 * <19	<77 * <73	670 J * <380	<390 * <370	<140 <140	<140 <130	<20 * <19	<21 * <20	<2400 * <2200	<2100 * <2000		<410 <390	<3600 <3400	<69 <66	<130 <120	<28 <27	<160 <150	<280 <260	<280 <260	<74 <70	<720 <680		230 <45	200 <46	<28 <27	89 <29	483 5.0	22,200 1,190,000
8260B	1,1-Dichloropropene	ug/Kg	<14	<56	<290	<280	<100	<98	<15	<15	<1700	<1600		<300	<2600	<50	<92	<20	<110	<200	<200	<53	<520		<35	<35	<20	<22	NE	NE
8260B	1,2,3-Trichlorobenzene	ug/Kg	<22	<86	<450	<440	<160	<150	<23	<23	<2600	<2400		<460 ^c *	<4000	<77 ^c *	<140 ^c *	<31	<170	<310	<310	<82 ^c *	<800 ^c 3	*	<53	<54	<31	<34	NE .	934,000
8260B 8260B	1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	ug/Kg ua/Ka	<20 * <16	<78 * <64	<410 * <340	<390 * <330	<140 <120	<140 <110	<21 * 83	<21 * <17	<2400 * <2000	<2200 * <1800		<410 2.100	7,100 J 20,000	<70 <58	<130 <110	<28 <23	<160 <130	<280 350 J	<280 <230	<74 <61	4,900 <600		<48 57 J	<49 40 J	<28 <23	<30 <25	52 408	109 113.000
8260B	1,2,4-Trimethylbenzene	ug/Kg	5,400 *	8,500 *	29,000 *	58,000 *		270,000		_	66,000 *	460,000 *		35,000	590,000	12,000	15,000	1,200	120,000	29,000		31,000	1,200,000)	7,000	5,600	8,900	380	1,378.7 (1)	219,000
8260B	1,2-Dibromo-3-Chloropropane	ug/Kg	<95 *	<370 *	<2000 *	<1900 *	<690	<660 <130	<99 * <19 *	<100 * <19 *	<11000 *	<10000 * <2000 *		<2000 <390	<17000	<340	<620	<140	<750	<1400	<1300	<360 <69	<3500		<230	<230 <45	<140	<150	0.20	92
8260B 8260B	1,2-Dibromoethane 1,2-Dichlorobenzene	ug/Kg ug/Kg	<18 * <16 *	<73 * 110 J *	<380 * 1100 *	<370 * 1,000 *	<130 <120	<110	100 *	43 J *	<2200 * <1900 *	<1700 *		<390	<3400 <2900	<65 <57	<120 <100	<26 <23	<150 <130	<260 <230	<260 <230	<60	<680 <590		<45 <39	<39	<26 <23	<28 <25	0.028 1,168	221 376,000
8260B	1,2-Dichloroethane	ug/Kg	<19 *	<74 *	<380 *	<370 *	<140	<130	<19 *	<20 *	<2300 *	<2000 *		<390	<3400	<66	<120	<27	<150	<270	<260	<70	<690		<46	<46	<27	<29	2.8	2,870
8260B 8260B	1,2-Dichloropropane 1,3,5-Trimethylbenzene	ug/Kg ua/Ka	<20 * 1,300 *	<80 * 2,300 *	<420 * 8,600 *	<410 * 16,000 *	<150 300,000	<140 55,000	<21 * 810 *	<21 * 970 *	<2500 * 21,000 *	<2200 *		<430 13,000	<3800 150,000	<72 3,700	<130 1,700	<29 350	<160 19,000	<290 9,600 *	<290 12,000 *	<77 9,900	<750 270.000		<50 1,900 *	<50 1,500 *	<29 2,100 *	<32 95 *	3.3 1.378.7 (1)	15,000 182.000
8260B	1,3-Dichlorobenzene	ug/Kg ug/Kg	<19	<75	<390	<380	<140	<130	<20	<20	<2300	<2100		<400	<3500	<68	<120	<27	<150	<270	<270	<72	<700		<47	<47	<27	<29	1,153	297,000
8260B	1,3-Dichloropropane	ug/Kg	<17	<68	<360	<340	<130	<120	<18	<18	<2100	<1900		<360	<3200	<61	<110	<25	<140	<250	<240	<65	<630		<42	<42	<25	<27	NE	1,490,000
8260B 8260B	1,4-Dichlorobenzene 2,2-Dichloropropane	ug/Kg ug/Kg	20,000 * <21	1,100 * <83	<360 * <440	<350 * <420	3,200 <160	2,000 <150	1300 * <22	580 * <22	<2100 * <2600	<1900 * <2300		3,200 <440	<3200 <3900	2,500 <75	710 <140	200 <30	4,000 <170	<250 <300	1,300 <300	1,100 <80	<640 <780		2,300 <52	1,000 <52	1,100 <30	48 J <33	144 NE	16,400 191,000
8260B	2-Chlorotoluene	ug/Kg	<15 *	<59 *	<310 *	<300 *	<110	<100	<16 *	<16 *	<1800 *	<1600 *		<310	<2800	<53	<97	<21	<120	<210	<210	<56	<550		<37	<37	<21	<23	NE	907,000
8260B	4-Chlorotoluene	ug/Kg	<17 *	<66 *	<340 *	<330 *	<120	<120	<17 *	<18 *	<2000 *	<1800 *		<350	<3100	<59	<110	<24	<130	<240	<240	<63	<610		<41	<41	<24	<26	NE .	253,000
8260B 8260B	Benzene Bromobenzene	ug/Kg ug/Kg	89 * <17 *	200 * <67 *	7,800 * <350 *	25,000 * <340 *	46,000 <120	7,100 <120	180 * <18 *	380 * <18 *	9,900 * <2100 *	22,000 * <1900 *		<150 <360	32,000 <3100	140 <60	90 <110	67 <24	240 <130	23,000 <240	<240	8,300 <64	3,800 <620		<17 <41	340 <42	22 <24	580 <26	5.1 NE	7,070 679,000
8260B	Bromochloromethane	ug/Kg	<20 *	<80 *	<420 *	<410 *	<150	<140	<21 *	<21 *	<2500 *	<2200 *		<430	<3800	<72	<130	<29	<160	<290	<290	<77	<750		<50	<50	<29	<32	NE	906,000
8260B 8260B	Bromodichloromethane Bromoform	ug/Kg ug/Kg	<18 * <23	<70 * <91	<360 * <470	<350 * <460	<130 <170	<120 <160	<18 * <24	<19 * <24	<2100 * <2800	<1900 * <2500		<370 <480	<3300 <4300	<63 <82	<120 <150	<25 <33	<140 <180	<250 <330	260 J <330	<67 <87	<650 <850		<43 <56	<44 <57	<25 <33	<27 <36	0.30 2.3	1,830 113,000
8260B	Bromomethane	ug/Kg ug/Kg	<38	<150	<780	<760	<280	<260	<39	<40	<4600	<4200		<790	<7000	<130	<250	<54	<300	<540	<540	<140	<1400		<93	<93	<54	<59	5.1	43,000
	Carbon tetrachloride	ug/Kg	<18	<72	<380	<370	<130	<130	<19	<19	<2200	<2000		<380	<3400	<65	<120	<26	<150	<260	<260	<69	<670		<45	<45	<26	<28	3.9	4,030
8260B 8260B	Chlorobenzene Chloroethane	ug/Kg ug/Kg	110 * <24	320 * <95	<380 * <490	<370 * <480	1,100 <180	370 <170	1,400 * <25	69 * <25	<2200 * <2900	<2000 * <2600		<390 <500	<3400 <4400	200 <85	<120 <160	57 J <34	240 J <190	410 J <340	410 J <340	210 <90	<680 <880		57 J <59	360 71 J	62 J <34	<28 360	136 227	761,000 2,120,000
8260B	Chloroform	ug/Kg	<18 *	<70 *	<360 *	<350 *	<130	<120	<18 *	<19 *	<2100 *	<1900 *		<370	<3300	<63	<110	<25	<140	<250	330 J	<66	<650		<43	<43	<25	29 J	3.3	1,980
8260B 8260B	Chloromethane	ug/Kg	<15 <19	<60 <77	<310 <400	<300 470 J	<110 55,000	<110 1,900	<16 21 J	<16	<1800 <2400	<1700 6,800		<320 1,200	<2800 17,000	<54 <69	<99 <130	<22	<120 <150	<220 <280	<220 <280	<57 420	<560 <720		<37 480	<38 920	<22	<24 48 J	16 41	669,000 2.340.000
8260B	cis-1,2-Dichloroethene cis-1,3-Dichloropropene	ug/Kg ug/Kg	<19 <20 *	<78 *	<400 *	<400 *	<150	<140	<21 *	<20 <21 *	<2400 *	<2200 *		<410	<3700	< 09 <70	<130	<28 <28	<160	<280	<280	<75	<720		<48	<49	<28 <28	<31	NE	1,210,000
8260B	Dibromochloromethane	ug/Kg	<23 *	<92 *	<480 *	<460 *	<170	<160	<24 *	<24 *	<2800 *	<2500 *		<490	<4300	<83	<150	<33	<180	<330	<330	<88>	<860		<57	<57	<33	<36	32	38,900
8260B 8260B	Dibromomethane Dichlorodifluoromethane	ug/Kg ug/Kg	<13 * <32	<51 * <130	<260 * <660	<260 * <640	<94 <240	<89 <220	<13 * <33	<14 * <34	<1600 * <3900	<1400 * <3500		<270 <670	<2400 <5900	<46 <110	<84 <210	<18 <46	<100 <260	<180 <460	<180 <460	<48 <120	<470 <1200		<31 <78	<32 <79	<18 <46	<20 <50	NE 3,086	143,000 530,000
8260B	Ethylbenzene	ug/Kg	3,700 *	21,000 *			1,000,000	150,000		12,000 *		950,000 *		<180	1,100,000	18,000	1,300	2,700	95,000	83,000		56,000				3,800	1,400	180	1,570	35,400
8260B	Hexachlorobutadiene	ug/Kg	<21	<84	<440	<420	<160	<150	<22	<22	<2600	<2300		<440	<3900	<75	<140	<30	<170	<300	<300	<80	<780		<52	<52	<30	<33	NE	7,190
8260B 8260B	Isopropyl ether Isopropylbenzene	ug/Kg ug/Kg	<13 670	<52 1,500	<270 5,400	<260 12,000	340 J 71,000	96 J 17,000	<14 500	<14 1,000	<1600 15,000	<1400 120,000		<280 14,000	<2400 110,000	<47 3,000	<86 1,700	<19 290	<100 16,000	<190 6,500	<190 8,800	<49 7,000	<480 67,000		<32 1,100	<32 840	<19 470	89 75	NE NE	2,260,000 268,000
8260B	Methyl tert-butyl ether	ug/Kg	<19 *	<74 *	<390 *	<380 *	<140	<130	<20 *	<20 *	<2300 *	<2100 *		<390	<3500	<67	<120	<27	<150	<270	<270	<71	<690		<46	<46	<27	<29	27	282,000
8260B	Methylene Chloride	ug/Kg	<78	<310	<1600	<1600	<570	<540	<81	<82	<9400	<8500		<1600	<14000	<280	<510	<110	<620	<1100	<1100	<290	<2900			350 J	<110	<120	2.6	1,150,000
8260B 8260B	Naphthalene n-Butylbenzene	ug/Kg ug/Kg	2,100 * 1,600	15,000 * 3,500	56,000 * 5,900	61,000 * 18,000		75,000 37,000	1,600 * 410	2700 * 610	15,000 * 6,400	160,000 * 74,000		5,200 2,900	170,000 60,000	24,000 3,300	6,200 <120	140 210	92,000 <150	7,000 4,700	10,000 5,000	3,600	<5900 310,000		4,700 850	3,300 <46	2,300 1,200	790 85	658 NE	24,100 108,000
8260B	N-Propylbenzene	ug/Kg	900	1,500	4,900	9,900	160,000	35,000	580	1,400	18,000	100,000		11,000	120,000	2,100	2,000	320	15,000	5,100	7,900	6,200	280,000		1,300	950	960	72 J	NE	264,000
8260B	p-Isopropyltoluene	ug/Kg	700	1,300	2,000	3,300	41,000	9,500	370	870 490 *	2,900 J	14,000		1,500	13,000	2,200	3,300	470	7,600	1,600	2,100	2,800	60,000			1,200	3,400	78	NE NE	162,000
8260B 8260B	sec-Butylbenzene Styrene	ug/Kg ug/Kg	390 * <18 *	510 * <73 *	860 J * <380 *	2,000 * <370 *	62,000 <130	12,000 <130	220 * <19 *	490 * <19 *	2,500 J * <2200 *	19,000 * <2000 *		1,400 <390	18,000 <3400	970 <65	1,900 <120	110 <26	6,000 <150	1,100 * <260	1,400 * <260	1,800 <69	76,000 <680		460 * <45	510 * <45	470 * <26	42 J * <28	NE 220	145,000 867,000
8260B	tert-Butylbenzene	ug/Kg	<19 *	<75 *	<390 *	<380 *	1,900	430	24 J *	54 *	<2300 *	<2100 *		<400	<3500	<67	<120	<27	750	<270 *	<270 *	<71	3,700		69 J *	58 J *	<27 *	<29 *	NE	183,000
8260B	Tetrachloroethene	ug/Kg	<18	1,100	<360	<350	270 J	<120	20 J	<19	2,700 J	26,000		<370	50,000	<63	<110	<25	<140	<250	<250	77 J	<650		<43	<43	<25	<27	4.5	145,000

Table 4. Analytical Results - Waste Sample Total VOC and PCB Analysis Waste Characterization Investigation, Boundary Road Landfill / SCS Engineers Project #25218040.01

NOTE: The waste sample analytical results in Table 4 were compared to the NR 720 RCLs for the groundwater pathway and the industrial direct contact pathway to identify potential contaminants of concern. The NR 720 RCLs are not applicable to the waste sampling results as compliance limits, and typical municipal and industrial solid waste is expected to have many constituents at levels exceeding RCLs. The comparison to RCLs is intended only for planning and evaluation purposes.

Method	Analyte	Unit	WC1S3	WC1S4	WC2S3	WC2S4	WC3S3	WC3S4	WC4S4	WC4S5	WC5S4	WC5S6	WC5\$6\$5	WC6S3	WC6S4	WC7S3	WC7S4	WC8S3	WC8S4	WC9S4	WC9S5	WC10S3	WC10S4	WC11S3S4	WC11S4	WC11S5	WC12S3		NR 720 Groundwater Pathway RCLs with Wisconsin- Default Dilution Factor of 2	
Depth			11	14	15	19	15	20	24	28	18	33	27 - 33	9	15	16	20	15	25	20	26	12	18	20 - 24	24	28	10	15		
Date			8/27/19	8/27/19	8/27/19	8/27/19	8/29/19	8/29/19	8/27/19	8/27/19	8/27/19	8/27/19	8/29/19	8/28/19	8/28/19	8/28/19	8/28/19	8/29/19	8/29/19	8/28/19	8/28/19	8/29/19	8/29/19	8/29/19	8/28/19	8/28/19	8/28/19	8/28/19		
8260B	Toluene	ug/Kg	80	2,400	42,000	35,000	4,600,000	370,000	900	100	110,000	1,700,000		170,000	2,500,000	420	270	670	3,700	4,500	3,200	3,000	670,000		1,200	780	720	340	1,107	818,000
8260B	trans-1,2-Dichloroethene	ug/Kg	<17	<66	<340	<330	1,100	170 J	<17	<18	<2000	<1800		<350	<3100	<59	<110	<24	<130	<240	<240	110 J	<610		<41	<41	<24	<26	63	1,850,000
	trans-1,3-Dichloropropene	ug/Kg	<17 *	<68 *	<360 *	<340 *	<130	<120	<18 *	<18 *	<2100 *	<1900 *		<360	<3200	<61	<110	<25	<140	<250	<240	<65	<630		<42	<42	<25	<27	NE	1,510,000
8260B	Trichloroethene	ug/Kg	<7.8	360	<160	<160	26,000	8,200	72	24 J	18,000	31,000		<160	62,000	45 J	<51	12 J	92 J	210 J	<110	270	<290		180	140	29 J	120	3.6	8,410
8260B	Trichlorofluoromethane	ug/Kg	<20	<80	<420	<410	<150	<140	<21	83	<2500	<2200		<430	<3800	<72	<130	<29	<160	<290	<290	<77	< 750		<50	<50	<29	<32	4,478	1,230,000
	Vinyl chloride	ug/Kg	<12	<49	<260	<250	290 J	<87	<13	<13	<1500	<1400		<260	<2300	<44	<81	<18	<99	<180	<180	<47	<460		<31	49 J	<18	<19	0.10	2,080
	Xylenes, Total	ug/Kg	12,000	69,000	500,000	590,000	8,500,000	1,100,000	10,000	12,000	2,000,000	5,400,000		510,000	5,600,000	190,000	10,000	9,400	300,000	480,000	660,000	220,000	1,300,000		37,000	16,000	7,000	810	3,960	260,000
	oup Totals																													
	Total PVOC	ug/Kg	24,669	118,400	739,400	915,000	16,296,000		==1::=	34,950	2,541,900	-,,			10,142,000	248,260	34,560	14,527	629,940	636,100			3,763,800		56,800	31,320	22,442	3,175		
	Total CVOC	ug/Kg		360	670	470	82,390	10,270	128	24	18,000	37,800		1,200	79,000	45		12	92	210	330	800			890	1,730	29	646		
	Total Other VOCs	ug/Kg	24,370	10,940	20,160	46,200	530,810	113,396	5,007	5,199	47,500	353,000		36,100	398,100	14,270	9,610	1,657	49,590	19,760	27,170	22,787	801,600		7,193	4,958	7,662	489		
	Total VOCs	ug/kg	49,039	129,700	760,230	961,670	16,909,200	2,150,766	25,325	40,173	2,607,400	9,222,800		770,500	10,619,100	262,575	44,170	16,196	679,622	656,070	922,700	358,387	4,565,400		64,883	38,008	30,133	4,310		
Physical																														
Moisture	Percent Moisture	%	30.6	51.3	43.1	25.7	25	26.6	27.1	20.6	47.1	32.3	26.9	32.2	27	26.9	25.1	15.8	30.1	15.9	17.2	30.1	29.3	32.8	39.9	39.5	17.6	19.6		
Moisture	Percent Solids	%	69.4	48.7	56.9	74.3	75	73.4	72.9	79.4	52.9	67.7	73.1	67.8	73	73.1	74.9	84.2	69.9	84.1	82.8	69.9	70.7	67.2	60.1	60.5	82.4	80.4		

Laboratory Notes:

- * LCS or LCSD is outside acceptance limits
- ^c CCV Recovery is outside acceptance limits.
- J Reported value was between the limit of detection and the limit of quantitation.

Abbreviations

mg/kg = milligrams per kilogram or parts per million (ppm) ug/kg = micrograms per kilogram or parts per billion (ppb)

RCL = Residual Contaminant Level --- = Not Applicable

NE = No Standard Established

Bold values exceed the limit of detection.

450 Yellow highlighted values exceed NR 720 RCLs for the industrial direct contact pathway and groundwater pathway

370 Blue highlighted values exceed NR 720 RCL for the groundwater pathway

Total PVOC includes petroleum VOCs benzene, ethylbenzene, toluene, xylenes, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, naphthalene, and methyl-tert-butyl ether. Total CVOC includes all chlorinated alkanes and alkenes.

Total Other VOC includes all other compounds, such as additional petroleum-related VOCs, ketones, and other halogenated compounds.

RCL Notes

Background threshold values are non-outlier trace element maximum levels in Wisconsin surface soils from the USGS Report at: http://pubs.usgs.gov/sir/2011/5202, as listed in the WDNR RR Program's RCL spreadsheet at: http://dnr.wi.gov/topic/Brownfields/professionals.html.

(1) 1,2,4- and 1,3,5-Trimethylbenzenes combined total = 1,378.7

I:\25218040.01\Deliverables\Waste Invest Report\Tables\[Table 3-6_Soil_Waste.xlsx]Waste

Table 5. Analytical Results - Waste Sample TCLP Analysis Waste Characterization Investigation, Boundary Road Landfill / SCS Project #25218040.01

					1	1		1		1	1		1	1		1	1	1	1	1		ı	1		1		
																											TCLP
	Analyte	Unit	WC1S3	WC1S4	WC2S3	WC2S4	WC3S3	WC3S4	WC4S4	WC4S5	WC5S4	WC5S6S5	WC6S3	WC6S4	WC7S3	WC7S4	WC8S3	WC8S4	WC9S4	WC9S5	WC10S3	WC10S4	WC11S3S4		WC12S3	WC12S4	Limit
Depth			11	14	15	19	15	20	24	28	18	27 - 33	9	15	16	20	15	25	20	26	12	18	20 - 24	28	10	15	
Date			8/27/2019	8/27/2019	8/27/2019	8/2//2019	8/29/2019	8/29/2019	8/27/2019	8/27/2019	8/27/2019	8/29/2019	8/29/2019	8/29/2019	8/29/2019	8/29/2019	8/29/2019	8/29/2019	8/29/2019	8/29/2019	8/29/2019	8/29/2019	8/29/2019	8/29/2019	8/29/2019	8/29/2019	-
Metals	Aroonio	100 Ct /I	0.010	0.010	0.054	0.010	0.040	0.040	0.040	0.010	0.010	0.010	0.010	0.040	0.040	0.010	0.040	0.047	0.010	0.040	0.040	0.040	0.040	0.010	0.010	0.010	
6010C	Arsenic	mg/L	<0.010	<0.010	0.054	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.017	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	5
6010C	Barium	mg/L	0.28	0.86	0.15	0.46	1.1	0.59	<0.050	0.45	0.69	0.44	0.22	0.51	0.44	0.45	0.29	0.23	68	2.8	1.4	2.7	0.6	0.063	0.14	1.5	100
6010C	Cadmium	mg/L	<0.0020	0.0047	<0.0020	0.0025	0.0021	0.013	0.002	0.005	0.0069	0.062	0.02	0.082	<0.0020	<0.0020	<0.0020	<0.0020	<0.020	0.014	0.032	<0.0020	0.0057	0.0033	<0.0020	<0.0020	
6010C	Chromium	mg/L	<0.010	0.011	0.028	<0.010	<0.010	<0.010	<0.010	0.055	<0.010	0.12	<0.010	0.016	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.01	<0.010	<0.010	<0.010	<0.010	<0.010	5
6010C 7470A	Lead	mg/L	<0.0075 <0.00020	3.8 0.00021	0.0098	0.041 < 0.00020	0.013 < 0.00020	0.043 < 0.00020	0.022 < 0.00020	0.013 < 0.00020	0.5 < 0.00020	6.4 < 0.00050	0.41 <0.00020	<0.00020	0.22 < 0.00020	0.32 <0.00020	0.04 < 0.00020	0.11 < 0.00020	0.022 <0.00020	0.16 < 0.00020	0.35 < 0.00020	0.032 < 0.00020	0.039 < 0.00020	0.1 < 0.00020	<0.0075 <0.00020	0.036 < 0.00020	5 0.2
6010C	Mercury Selenium	mg/L										0.024															1
6010C	Silver	mg/L ma/L	<0.020 <0.010	<0.020 <0.010	<0.020 <0.010	<0.020 <0.010	<0.020 <0.010	<0.020 <0.010	<0.020 <0.010	<0.020 <0.010	<0.020 <0.010	<0.024	<0.020 <0.010	<0.020 <0.010	<0.020 <0.010	<0.020 <0.010	<0.020 <0.010	<0.020 <0.010	<0.020 <0.010	<0.020 <0.010	<0.020 <0.010	<0.020 <0.010	<0.020 <0.010	<0.020 <0.010	<0.020 <0.010	<0.020 <0.010	5
	Organic Compounds (\	J.	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	J
8260B	1,1-Dichloroethene	ug/L	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	700
8260B	1,2-Dichloroethane	ug/L	<10	<10	<10	<10	<10	<10	<10	<10	<10	86	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	500
8260B	Benzene	ug/L	<10	<10	110	96	190	230	<10	<10	25	650	<10	79	<10	<10	<10	11	20	<10	51	41	<10	<10	<10	<10	500
8260B	Carbon tetrachloride	ug/L	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	500
8260B	Chlorobenzene	ug/L	<10	<10	<10	<10	<10	<10	12	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	100,000
8260B	Chloroform	ug/L	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	6,000
8260B	Methyl Ethyl Ketone	ug/L	<50	110	<50	<50	<50	<50	54	<50	730	7100	340	1300	<50	<50	<50	470	<50	<50	<50	<50	<50	170	<50	<50	200,000
8260B	Tetrachloroethene	ug/L	<10	<10	<10	<10	<10	<10	<10	<10	20	120	<10	61	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	700
8260B	Trichloroethene	ug/L	<10	<10	<10	<10	70	64	<10	<10	31	440	<10	110	<10	<10	<10	15	<10	<10	<10	<10	<10	<10	<10	<10	500
8260B	Vinyl chloride	ug/L	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	200
Semivol	atile Organic Compour	ds (SVC	Cs)		1															1	-			-	-	-	
8270D	1,4-Dichlorobenzene	mg/L	<0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	<0.020	< 0.020	<0.020	< 0.020	<0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	<0.020	< 0.020	<0.020	< 0.020	< 0.020	< 0.020	7.5
8270D	2,4,5-Trichlorophenol	mg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	< 0.10	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	400
8270D	2,4,6-Trichlorophenol	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	2
8270D	2,4-Dinitrotoluene	mg/L	< 0.010	< 0.010	< 0.010	<0.010	< 0.010	< 0.010	<0.010	<0.010	<0.010	< 0.010	<0.010	< 0.010	< 0.010	< 0.010	< 0.010	<0.010	< 0.010	< 0.010	< 0.010	<0.010	<0.010	< 0.010	< 0.010	< 0.010	0.13
8270D	2-Methylphenol	mg/L	< 0.020	<0.020	0.051	< 0.020	< 0.020	< 0.020	<0.020	< 0.020	0.097	0.073	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	200
8270D	3 & 4 Methylphenol	mg/L	< 0.020	0.066	< 0.020	< 0.020	< 0.020	< 0.020	<0.020	< 0.020	0.56	0.18	0.027	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	0.11	< 0.020	< 0.020	200
8270D	Hexachlorobenzene	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.13
8270D	Hexachlorobutadiene	mg/L	< 0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	< 0.050	< 0.050	0.5
8270D	Hexachloroethane	mg/L	< 0.050	< 0.050	<0.050	<0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	3
8270D	Nitrobenzene	mg/L	< 0.010	< 0.010	<0.010	<0.010	<0.010	< 0.010	<0.010	<0.010	<0.010	0.24	<0.010	0.24	<0.010	< 0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	< 0.010	< 0.010	< 0.010	2
8270D	Pentachlorophenol	mg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	100
8270D	Pyridine	mg/L	<0.20	<0.20	< 0.20	< 0.20	<0.20	< 0.20	<0.20	<0.20	<0.20	<0.20	< 0.20	< 0.20	< 0.20	<0.20	< 0.20	< 0.20	< 0.20	<0.20	<0.20	<0.20	<0.20	< 0.20	< 0.20	< 0.20	5

Abbreviations

mg/L = milligrams per liter or parts per million (ppm) ug/L = micrograms per liter or parts per billion (ppb) TCLP = Toxicity Characteristic Leaching Procedure

Bold value indicates analyte was detected.

6.4 Highlighted cell indicates result exceeds TCLP Limit.

 $I: \verb|\25218040.01| Deliverables \verb|\Waste Invest Report\\| Tables \verb|\[Table 3-6_Soil_Waste.x|sx]| TCLP Waste | Invest Report\\| Tables \verb|\[Tables 3-6_Soil_Waste.x|sx]| TCLP Waste | Invest Report\\| Tables Tables$

Table 6. Analytical Results - Soil Samples Below Waste Waste Characterization Investigation, Boundary Road Landfill / SCS Engineers Project #25218040.01

															NR 720 Groundwater Pathway RCLs with a Wisconsin- Default Dilution	NR 720 Industrial Direct
Method	Analyte	Unit	WC1S9	WC2S6	WC3S5	WC4S6	WC5S7	WC6S6	WC7S5	WC8S5	WC9S6	WC10S5	WC11S6	WC12S5	Factor of 2	Contact RCLs
Depth	ritalyto		24	27	24	40	39	27	27	33	33	21	38	22		
Date		U	8/27/2019	8/27/2019	8/29/2019	8/27/2019	8/27/2019	8/28/2019	8/28/2019	8/29/2019	8/28/2019	8/29/2019	8/28/2019	8/28/2019		
Volatile (Organic Compounds (VOCs)													•		
8260B	1,1,1,2-Tetrachloroethane	ug/Kg	<23 *	<23 *	<31	<21 *	<23 *	<33	<29	<31	<31	<34	<28	<31	53	12,300
8260B	1,1,1-Trichloroethane	ug/Kg	<19	<19	<25	<17	<19	<27	<24	<25	<25	<28	<23	<25	140	640,000
8260B	1,1,2,2-Tetrachloroethane	ug/Kg	<20	<20	<27	<18	<20	<29	<25	<26	<27	<29	<24	<26	0.20	3,600
8260B	1,1,2-Trichloroethane	ug/Kg	<18 *	<18 *	<24	<16 *	<17 *	<25	<22	<23	<24	<26	<22	<23	3.2	7,010
8260B	1,1-Dichloroethane	ug/Kg	<20 *	<20 *	<27	<19 *	<20 *	42 J	<26	<27	<28	<30	<25	87	483	22,200
8260B	1,1-Dichloroethene	ug/Kg	<19	<19	<26	<18	<19	<28	<25	<26	<26	<29	<24	<26	5.0	1,190,000
8260B	1,1-Dichloropropene	ug/Kg	<15	<15	<20	<14	<15	<21	<19	<20	<20	<22	<18	<20	NE	NE
8260B	1,2,3-Trichlorobenzene	ug/Kg	<23	<23	<31	<21	<23	<33	<29	<30	<31	<34 ^c * F1	<28	<30 ^c *	NE	934,000
8260B	1,2,3-Trichloropropane	ug/Kg	<21 *	<21 *	<28	<19 *	<21 *	<30	<26	<27	<28	<30	<25	<28	52	109
8260B	1,2,4-Trichlorobenzene	ug/Kg	<17	<17	<23	<16	<17	<25	<22	<23	<23	<25	<21	<23	408	113,000
8260B	1,2,4-Trimethylbenzene	ug/Kg	38 J *	<18 *	5,800	25 J *	2,700 *	52,000	180	100	29 J	5,000	82	240	1,378.7 (1)	219,000
8260B	1,2-Dibromo-3-Chloropropane	ug/Kg	<99 *	<99 *	<130	<91 *	<99 *	<140	<130	<130	<130	<150 F1	<120	<130	0.20	92
8260B	1,2-Dibromoethane	ug/Kg	<19 *	<19 *	<26	<18 *	<19 *	<28	<24	<26	<26	<28	<24	<26	0.028	221
8260B	1,2-Dichlorobenzene	ug/Kg	<17 *	<17 *	<22	<15 *	<17 *	<24	<21	<22	<22	<25	<21	<22	1,168	376,000
8260B	1,2-Dichloroethane	ug/Kg	<20 *	<19 *	<26	<18 *	<19 *	<28	<25	<26	<26	<29	<24	<26	2.8	2,870
8260B	1,2-Dichloropropane	ug/Kg	<21 *	<21 *	<29	<20 *	<21 *	<31	<27	<28	<29	<31	<26	<28	3.3	15,000
8260B	1,3,5-Trimethylbenzene	ug/Kg	<19 *	<19 *	<25	<17 *	170 *	9,300 *	31 J *	<25	<25 *	1,100	<23 *	73	1,378.7 (1)	182,000
8260B	1,3-Dichlorobenzene	ug/Kg	<20	<20	<27	<18	<20	<29	<25	<26	<27	<29	<25	<27	1,153	297,000
8260B	1,3-Dichloropropane	ug/Kg	<18	<18	<24	<17	<18	<26	<23	<24	<24	<27	<22	<24	NE	1,490,000
8260B	1,4-Dichlorobenzene	ug/Kg	44 J *	<18 *	<24	<17 *	75 *	<26	<23	<24	140	<27	<22	<24	144	16,400
8260B	2,2-Dichloropropane	ug/Kg	<22	<22	<30	<20	<22	<32	<28	<29	<30	<33	<27	<30	NE	191,000
8260B	2-Chlorotoluene	ug/Kg	<16 *	<16 *	<21	<14 *	<16 *	<23	<20	<21	<21	<23 F1	<19	<21	NE	907,000
8260B	4-Chlorotoluene	ug/Kg	<17 *	<17 *	<23	<16 *	<17 *	<25	<22	<23	<23	<26	<22	<23	NE	253,000
8260B	Benzene	ug/Kg	<7.3 *	29 *	250	23 *	47 *	54	< 9.3	< 9.7	91	120	90	1,300	5.1	7,070
8260B	Bromobenzene	ug/Kg	<18 *	<18 *	<24	<16 *	<18 *	<26	<23	<24	<24	<26	<22	<24	NE	679,000
8260B	Bromochloromethane	ug/Kg	<21 *	<21 *	<29	<20 *	<21 *	<31	<27	<28	<29	<31	<26	<28	NE	906,000
8260B	Bromodichloromethane	ug/Kg	<19 *	<19 *	<25	<17 *	<18 *	<27	<24	<25	<25	<27	<23	<25	0.30	1,830
8260B	Bromoform	ug/Kg	<24	<24	<32	<22	<24	<35	<31	<32	<32	<36	<30	<32	2.3	113,000
8260B	Bromomethane	ug/Kg	<40	<40	<53	<37	<39	<57	<51	<53	<53	<58	<49	<53	5.1	43,000
8260B	Carbon tetrachloride	ug/Kg	<19	<19	<26	<18	<19	<28	<24	<25	<26	<28	<24	<26	3.9	4,030
8260B	Chlorobenzene	ug/Kg	<19 *	<19 *	<26	52 *	30 J *	<28	<24	<26	140	<28	<24	38 J	136	761,000
8260B	Chloroethane	ug/Kg	<25	<25	<34	<23	<25	<36	<32	<33	<34	<37	<31	320	227	2,120,000
8260B	Chloroform	ug/Kg	<18 *	<18 *	<25	<17 *	<18 *	<27	<23	<24	<25	<27	<23	29 J	3.3	1,980

Table 6. Analytical Results - Soil Samples Below Waste Waste Characterization Investigation, Boundary Road Landfill / SCS Engineers Project #25218040.01

															NR 720 Groundwater Pathway RCLs with a Wisconsin- Default Dilution	NR 720 Industrial Direct Contact
Method	Analyte	Unit	WC1S9	WC2S6	WC3S5	WC4S6	WC5S7	WC6S6	WC7S5	WC8S5	WC9S6	WC10S5	WC11S6	WC12S5	Factor of 2	RCLs
Depth			24	27	24	40	39	27	27	33	33	21	38	22		
Date	T						8/27/2019	8/28/2019	8/28/2019			8/29/2019	8/28/2019			
8260B	Chloromethane	ug/Kg	<16	<16	<21	<15	<16	<23	<20	<21	<21	<23	<20	<21	16	669,000
8260B	cis-1,2-Dichloroethene	ug/Kg	<20	<20	<27	<19	<20	<29	<26	<27	<27	<30	<25	48 J	41	2,340,000
8260B	cis-1,3-Dichloropropene	ug/Kg	<21 *	<21 *	<28	<19 *	<21 *	<30	<26	<28	<28	<31	<26	<28	NE	1,210,000
8260B	Dibromochloromethane	ug/Kg	<24 *	<24 *	<33	<22 *	<24 *	<35	<31	<32	<33	<36	<30	<32	32	38,900
8260B	Dibromomethane	ug/Kg	<13 *	<13 *	<18	<12 *	<13 *	<19	<17	<18	<18	<20	<17	<18	NE	143,000
8260B	Dichlorodifluoromethane	ug/Kg	<34	<34	<45	<31	<33	<48	<43	<45	<45	<49	<41	<45	3,086	530,000
8260B	Ethylbenzene	ug/Kg	56 *	14 *	12,000	14 *	1,100 *	14,000	120	150	20	760	<11	330	1,570	35,400
8260B	Hexachlorobutadiene	ug/Kg	<22	<22	<30	<20	<22	<32	<28	<29	<30	<33	<27	<30	NE	7,190
8260B	Isopropyl ether	ug/Kg	<14	<14	<18	<13	<14	<20	<18	<18	<19	<20	<17	100	NE	2,260,000
8260B	Isopropylbenzene	ug/Kg	<19	37 J	1,200	<18	170	1,400	41 J	29 J	210	2,000	33 J	89	NE	268,000
8260B	Methyl tert-butyl ether	ug/Kg	<20 *	<20 *	<26	<18 *	<20 *	<28	<25	<26	<26	<29	<24	<26	27	282,000
8260B	Methylene Chloride	ug/Kg	<81	<81	<110	<75	<81	<120	<100	<110	<110	<120	<100	<110	2.6	1,150,000
8260B	Naphthalene	ug/Kg	31 J *	22 J *	140	<15 *	810 *	43,000	170	81	70	13,000 F1	44 J	130	658	24,100
8260B	n-Butylbenzene	ug/Kg	<19	<19	<26	<18	<19	3,000	100	47 J	<26	1,600	<24	<26	NE	108,000
8260B	N-Propylbenzene	ug/Kg	<21	<21	890	<19	460	6,900	36 J	<27	200	6,200	<25	56 J	NE	264,000
8260B	p-Isopropyltoluene	ug/Kg	<18	<18	47 J	<17	75	630	78	<24	<24	240	<22	72	NE	162,000
8260B	sec-Butylbenzene	ug/Kg	<20 *	<20 *	54 J	<18 *	100 *	780 *	<25 *	<26	30 J *	470	<24 *	<26	NE	145,000
8260B	Styrene	ug/Kg	<19 *	<19 *	<26	<18 *	<19 *	<28	<24	<26	<26	<28	<24	<26	220	867,000
8260B	tert-Butylbenzene	ug/Kg	<20 *	<20 *	<27	<18 *	<20 *	<29 *	<25 *	<26	<27 *	<29	<24 *	<26	NE	183,000
8260B	Tetrachloroethene	ug/Kg	<18	<18	<25	<17	<18	<27	<23	<24	<25	<27	<23	<25	4.5	145,000
8260B	Toluene	ug/Kg	<7.3	<7.3	70	<6.7	570	12,000	44	95	< 9.9	900	< 9.0	440	1,107	818,000
8260B	trans-1,2-Dichloroethene	ug/Kg	<17	<17	<23	<16	<17	<25	<22	<23	<23	<26	<22	<23	63	1,850,000
8260B	trans-1,3-Dichloropropene	ug/Kg	<18 *	<18 *	<24	<17 *	<18 *	<26	<23	<24	<24	<27	<22	<24	NE	1,510,000
8260B	Trichloroethene	ug/Kg	<8.2	<8.2	<11	<7.5	49	<12	<10	<11	<11	<12	<10	160	3.6	8,410
8260B	Trichlorofluoromethane	ug/Kg	<21	<21	<29	<20	<21	<31	<27	<28	<29	<31	<26	<28	4,478	1,230,000
8260B	Vinyl chloride	ug/Kg	<13	<13	<18	<12	<13	<19	<17	<17	<18	<19	<16	<17	0.10	2,080
8260B	Xylenes, Total	ug/Kg	230	90	14,000	24	3,600	65,000	860	440	100	3,500	72	1,400	3,960	260,000
VOC Gro	oup Totals		•	•		•	•						•	•		
	Total PVOC	ug/Kg	355	155	32,260	86	8,997	195,354	1,405	866	310	24,380	288	3,913		
	Total CVOC	ug/Kg	ND	ND	ND	ND	49	42	ND	ND	ND	ND	ND	644		
	Total Other VOCs	ug/Kg	44	37	2,191	52	910	12,710	255	76	720	10,510	33	355		
	Total VOCs	ug/kg	399	192	34,451	138	9,956	208,106	1,660	942	1,030	34,890	321	4,912		

Table 6. Analytical Results - Soil Samples Below Waste Waste Characterization Investigation, Boundary Road Landfill / SCS Engineers Project #25218040.01

Method Analyte	Unit	WC1S9	WC2S6	WC3S5	WC4S6	WC5S7	WC6S6	WC7\$5	WC8\$5	WC9S6	WC10\$5	WC11S6	WC12\$5	NR 720 Groundwater Pathway RCLs with a Wisconsin- Default Dilution Factor of 2	NR 720 Industrial Direct Contact RCLs
Depth		24	27	24	40	39	27	27	33	33	21	38	22		
Date		8/27/2019	8/27/2019	8/29/2019	8/27/2019	8/27/2019	8/28/2019	8/28/2019	8/29/2019	8/28/2019	8/29/2019	8/28/2019	8/28/2019		
Physical															
Moisture Percent Moisture	%	14.7	16.3	18.3	13.3	11.8	18.8	15.4	13.9	13.6	21.4	12.6	16.9		
Moisture Percent Solids	%	85.3	83.7	81.7	86.7	88.2	81.2	84.6	86.1	86.4	78.6	87.4	83.1	1	

Laboratory Notes:

- LCS or LCSD is outside acceptance limits
- ^c CCV Recovery is outside acceptance limits.
- J Reported value was between the limit of detection and the limit of quantitation.
- F1 MS and/or MSD Recovery is outside acceptance limits.

Abbreviations:

mg/kg - milligrams per kilogram or parts per million (ppm) ug/kg = micrograms per liter or parts per billion (ppb) RCLs = Residual Contaminant Levels NE = No Standard Established -- = Not Applicable

Bold values exceed the limit of detection.

450 Yellow highlighted values exceed NR 720 RCLs for the industrial direct contact pathway and the groundwater pathway

370 Blue highlighted values exceed NR 720 RCL for the groundwater pathway

Total PVOC includes petroleum VOCs benzene, ethylbenzene, toluene, xylenes, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, naphthalene, and methyl-tert-butyl ether.

Total CVOC includes all chlorinated alkanes and alkenes.

Total Other VOC includes all other compounds, such as additional petroleum-related VOCs, ketones, and other halogenated compounds.

RCL Notes:

NR 720 RCLs updated as of December 2018.

(1) 1,2,4- and 1,3,5-Trimethylbenzenes combined total = 1,378.7

I:\25218040.01\Deliverables\Waste Invest Report\Tables\[Table 3-6_Soil_Waste.xlsx]Soil

Table 7. Leachate Head Well Elevations
Waste Characterization Investigation, Boundary Road Landfill / SCS Engineers Project #25218040.01

	LHW-1	LHW-2	LHW-3	LHW-4	LHW-5	LHW-6	LHW-7	LHW-8
Well Elevations								
TOC Elevation	765.4	778.0	774.0	777.1	785.8	777.4	778.6	774.3
Ground Surface Elevation	763.4	773.9	770.1	771.8	782.2	774.1	775.1	770.5
Bottom of Well Elevation	747.4	743.9	739.1	744.3	746.2	752.1	743.1	750.5
Depth to Leachate								
6/22/2012	10.9	26.4	22.0	21.9	32.2			
9/24/2019	11.5	26.4	21.95	24.7	32.2	Dry	26.9	20.83
Leachate Elevation								
6/22/2012	754.5	751.6	752.0	755.2	753.6	-	-	-
9/24/2019	753.9	751.6	752.1	752.4	753.6	Dry	751.7	753.5
Leachate Head Above Bottom of	of Well							
6/22/2012	7.1	7.7	12.9	10.9	7.4			
9/24/2019	6.5	7.7	13.0	8.1	7.4	Dry	8.6	3.0

Updated by: BSS, 11/27/19 Checked by: SCC, 11/27/19

I:\25218040.01\Deliverables\Waste Invest Report\Tables\[Table 7_LchLevels.xlsx]Table 7

		Existing Wells						New Wells		MMSD	т—						
			LH\	N1	LH\	M2		W3	IH	W4	LH	W5	LHV		LHW8	Discharge	NR 140
Method	Analyte	Units		9/24/2019		9/24/2019		9/24/2019			5/14/2013			12/18/2019	9/24/2019	Limit	ES
350.1	Ammonia (as N)	mg/L	20	43	182	295	103	53	37	37	2.1	54	136	133	52		- 10
000.1	7.1111011112 (2511)	Million							-								+
100.1	Asbestos	Fibers	<347		<347		<347		<347		<34.7			<1.0			- 7
SM 5210B	Biochemical Oxygen Demand (BOD)	mg/L	14		28		17		20		17.7		505	476	213		
335.4	Cyanide, Total	mg/L	< 0.01		0.0052		< 0.01		<0.01		<0.01		1.4	0.13	< 0.0050	5	200
1664B	Oil & Grease (HEM)	mg/L	<5		<5		<5		<5		<5		8.6	8.8	1.3	300	ز
SM 2540D	Total Suspended Solids	mg/L	44		47		75		62		39.2		16.8	48.1	28		
Metals	,																1
200.8	Antimony	ug/L	0.55		1.5	-	1.5		0.65		1.0		230	599	3.6	-	- 6.0
200.8	Arsenic	ug/L	9.4		27		6.5		3.1		3.3		60	42.3	12	600	10
200.8	Beryllium	ug/L	0.048		0.053		< 0.4		< 0.4		0.048		0.21	0.40	1.5	-	- 4.0
200.8	Cadmium	ug/L	<0.2		< 0.4		0.34		1.7		0.14		4.9	13.7	0.86	1,500	5.0
200.7 Rev 4.4	Chromium	ug/L	5.4		18.7		7.2		30.5		9.8		4,930	13,500	36.3	64,000	100
200.7 Rev 4.4	Copper	ug/L	9.1		5.3		8.3		5.2		5.8		67.7	179	63.2	6,000	1300
200.8	Lead	ug/L	6.6		9.3		19.2		6.6		5.8		11,300	29,200	110	2,000	
200.8	Lead, Dissolved	ug/L												23.1		2,000	15
939-M	Lead, Total Organic	ug/L	<12.5	-	<12.5	-	<12.5		<12.5		<12.5		0.64		<0.63	13	
245.1	Mercury	ug/L	<0.2		<0.2		<0.2		<0.2		0.24		3.6	6.1	0.33	2.6	
200.7 Rev 4.4	Molybdenum	ug/L	<10		<10		<10		<10		<10		187	133	26.2	12,000	
200.7 Rev 4.4	Nickel	ug/L	11.2	1	70.2	-	10.9		29.1		25.3		350	344	72	4,000	
200.8	Selenium	ug/L	<1	1	<2	-	<2		<1		<1		3.6	16.6	0.78	1	- 50
200.7 Rev 4.4	Silver	ug/L	<10	-	<10	-	<10		<10		<10		3.0	10.9	<1.7	5,800	
200.8	Thallium	ug/L	0.012	-	< 0.4	-	< 0.4		< 0.4		0.012		0.12	0.22	0.17		- 2.0
200.7 Rev 4.4	Zinc	ug/L	46.2		27		17.6		58		54.3		6,400	12,300	271	8,000	5000
Pesticides																	
8081B	4,4'-DDD	ug/L	<0.24		< 0.047		< 0.047		<0.047		< 0.047		0.18	<0.046	<0.010	-	
8081B	4,4'-DDE	ug/L	<0.24		0.018		0.024		0.016		< 0.047		0.17	<0.058	< 0.013		
8081B	4,4'-DDT	ug/L	<0.24	0.031	< 0.047	0.068	0.018	< 0.037	0.012	<0.011	< 0.047	0.028	< 0.055	< 0.055	<0.012	1.3	<u></u>
8081B	Aldrin	ug/L	<0.24		0.013	-	0.029		< 0.047		<0.047		<0.041	< 0.041	0.015		
8081B	alpha-BHC	ug/L	0.054		0.013		0.04		0.0096		0.013		0.14	0.071	<0.0084		
8081B	beta-BHC	ug/L	<0.24	-	0.046	-	< 0.047		< 0.047		< 0.047		0.5	<0.12	<0.027		
8081B	Chlordane	ug/L	<2.4		< 0.47	-	< 0.47		< 0.47		<0.47		<1.5	<1.5	<0.32	1.3	3 2.0
8081B	delta-BHC	ug/L	<0.24		< 0.047		< 0.047		< 0.047		< 0.047		0.47	< 0.050	<0.011		
8081B	Dieldrin	ug/L	<0.24		0.016		0.011		0.0094		< 0.047		0.18	<0.049	<0.011	0.65	
8081B	Endosulfan I	ug/L	<0.24		< 0.047		<0.047		<0.047		< 0.047		<0.055	<0.055	<0.12	1.3	
8081B	Endosulfan II	ug/L	<0.24		< 0.047		0.042		< 0.047		< 0.047		<0.060	<0.060	< 0.13	1.3	·
8081B	Endosulfan sulfate	ug/L	< 0.24		< 0.047		< 0.047		<0.047		< 0.047		<0.079	<0.079	0.034		
8081B	Endrin	ug/L	< 0.24		0.014		< 0.047		< 0.047		< 0.047		<0.069	<0.069	< 0.015	1.3	3 2.0
8081B	Endrin aldehyde	ug/L	<0.24 0.035	0.036	< 0.047		<0.047	0.027	<0.047 0.0097		<0.047 0.014	<0.0080	0.32	<0.082	< 0.018	0.75	0.2
8081B	gamma-BHC (Lindane)	ug/L		0.036	<0.047	<0.027	0.028	<0.027		<0.0080		<0.0080	0.24	<0.040	<0.0087	0.65	
8081B	Heptachlor	ug/L	<0.24 <0.24		0.0087		0.009		<0.047 <0.047		<0.047 <0.047		0.20 0.057	0.14 <0.037	<0.0092 <0.0080	0.65	- 0.2
8081B	Heptachlor epoxide	ug/L	<0.24		< 0.047		<0.047		<0.047		<0.047		<0.048	<0.037	<0.0080	260	
8081B	Mirex	ug/L			< 0.047		<0.047		<0.047		<0.047			<0.60			
8081B	Toxaphene	ug/L	<4.7		< 0.94		< 0.94		<0.95		<0.94		<0.60	<0.60	<0.13	26	3.0
,	ed Biphenyls (PCBs)	ua/l	< 0.47	<0.18	0.47	<0.18	0.47	<0.18	< 0.47	<0.18	<0.47	<0.18	<0.88	<0.88	<0.18		
8082A	Aroclor 1016	ug/L ug/L	<0.47	<0.18	< 0.47	<0.18	< 0.47	<0.18	<0.47	<0.18	<0.47	<0.18	<0.88	<0.88	<0.18		+
8082A	Aroclor 1221		<0.47	<0.18	<0.47 <0.47	<0.18	< 0.47	<0.18	<0.47	<0.18	<0.47	<0.18	<0.88	<0.88	<0.18		+
8082A	Aroclor 1232	ug/L	<0.47	<0.18		<0.18 0.57	<0.47	<0.18 0.43	<0.47 0.49	0.43	<0.47 0.61	<0.18 2.6	<0.88 5.7	<0.88 9.8	<0.18		+
8082A	Aroclor 1242	ug/L	<0.47	<0.18	0.66	<0.18	0.65	<0.18	< 0.47	<0.18	<0.47	<0.18	<0.88	<0.88	<0.18		1
8082A	Aroclor 1248	ug/L ug/L	<0.47	<0.18	<0.47 0.24	<0.18	<0.47 <0.47	<0.18	0.47	<0.18	<0.47	<0.18	<0.88 1.3	<0.88 2.5	<0.18		+
8082A	Aroclor 1254 Aroclor 1260	ug/L ug/L	<0.47	<0.25	<0.47	<0.25	<0.47	<0.25	<0.47	<0.25	<0.47	<0.25	<1.3	<1.3	<0.26		+
8082A																	

	T					Existing Wells					New Wells		MMSD	$\overline{}$
			LH'	W1	LHW2	LHW3	LHW4	LH	IW5	LH	W7	LHW8	Discharge	NR 140
Method	Analyte	Units				5/14/2013 9/24/2019					12/18/2019		Limit	ES
	ic Compounds (VOCs)													
8260C	1.1.1-Trichloroethane	ug/L	<4		<10	<10	<10	<1		<66	<66	<0.16		200
8260C	1,1,2,2-Tetrachloroethane	ug/L	<4		<10	<10	<10	<1		<17	<17			0.2
8260C	1,1,2-Trichloroethane	ug/L	<4		<10	<10	<10	<1		<18	<18	<4.6		. 5
8260C	1,1-Dichloroethane	ug/L	<4		<10	<10	<10	1.4		<30	<30			850
8260C	1,1-Dichloroethene	ug/L	<4		<10	<10	<10	<1		<23	<23	<5.8		7
8260C	1,2,4-Trichlorobenzene	ug/L	<4		<10	<10	<10	<1		<33	<33			- 70
8260C	1,2-Dichlorobenzene	ug/L	<4		<10	<10	<10	1.4		<63	<63	<16		600
8260C	1,2-Dichloroethane	ug/L	<4		<10	<10	<10	<1		<17	<17	<4.2		- 5
8260C	1,2-Dichloropropane	ug/L	<4		<10	<10	<10	<1		<58	<58	<14		5
8260C	1,3-Dichlorobenzene	ug/L	<4		<10	<10	<10	<1		<62	<62			. <u> </u>
8260C	1,3-Dichloropropene	ug/L	<8		<20	<20	<20	<2		<58	<58	<14		0.4
8260C	1,4-Dichlorobenzene	ug/L	<4		<10	19	26	28		78	<67	<17		75
8260C	2-Chloroethyl vinyl ether	ug/L	<20		<50	<50	<50	<5		<77	<77	<19		
8260C	Acrolein	ug/L	<80		<200	<200	<200	<20		<73	<73	<18	390	
8260C	Acrylonitrile	ug/L	<20		<50	<50	<50	<5		<66	<66			
8260C	Benzene	ug/L	44		160	35	40	1200		68	44			. F
8260C	Bromodichloromethane	ug/L	<4		<10	<10	<10	<1		<31	<31			- 0.6
8260C	Bromoform	ug/L	<4		<10	<10	<10	<1		<21	<21	<5.2		4.4
8260C		ug/L	<4		<10	<10	<10	<1		<55	<55	<14		10
8260C	Bromomethane Carbon tetrachloride	ug/L	<4		<10	<10	<10	<1		<22	<22			10
8260C		ug/L	<4		11	17	150	10		<60	<60			
8260C	Chlorobenzene Chloroethane	ug/L	<4		<10	41	24	18		<26	<26			400
8260C	Chloroform	ug/L	<4		<10	<10	<10	<1	1	<27	<27	<6.8		400
8260C	Chloromethane	ug/L	<4		<10	<10	<10	<1		<28	<28	<7.0		- 30
8260C		ug/L	<4		<10	<10	<10	<1		<26	<26			- 60
8260C	Dibromochloromethane	ug/L	<4		36	8.7	19	410		2300	1300	600		700
8260C	Ethylbenzene Methylene Chloride	ug/L	<4		<10	<10	<10	<1	1	<35	<35		-	700
8260C	Tetrachloroethene	ug/L	<4		<10	<10	<10	<1		<29	<29		-	5
8260C		ug/L	<4		6.8	<10	<10	27		3300	1300	1200		800
8260C	Toluene	ug/L	<4		<10	<10	<10	<1		<72	<72	<18		100
	Trans-1,2-Dichloroethene	ug/L	<4				<10	<1		<37	<37	<9.2		100
8260C	Trichloroethene	ug/L	<4		<10	<10	<10	<1		<72	<72			0.2
8260C	Vinyl chloride	ug/L	\4		<10	<10	<10	<1		<12	<12	< 10		0.2
	rganic Compounds (SVOCs)	ug/L	<94		100	Or	<94	<48		<35	<8.8	<7.6	1	
8270D 8270D	1,2-Diphenylhydrazine	ug/L	<47		<190 <95	<95 <47	<47	<24		<61	<15		130	
8270D 8270D	2,4,6-Trichlorophenol	ug/L	<47		<95	<47	<47	<24		<51	<13		130	
8270D 8270D	2,4-Dichlorophenol	ug/L	<47			18	6	29		180	200			
8270D 8270D	2,4-Dimethylphenol	ug/L ug/L	<94		<95 <190	 	<94	<48		<220	<56			
8270D 8270D	2,4-Dinitrophenol 2,4-Dinitrotoluene	ug/L ug/L	<47	-		<95 <47	<47	<40		<45	<11	< 9.7	<u> </u>	0.05
8270D 8270D	2,4-Dinitrotoluene 2,6-Dinitrotoluene	ug/L ug/L	<47		<95 <95	<47	<47	<24		<40	<10			0.05
8270D 8270D		ug/L ug/L	<47		<95	<47	<47	<24		<40	<12			0.05
8270D 8270D	2-Chlorophonol	ug/L	<47		<95	<47	<47	<24		<53	<13		-	
8270D 8270D	2-Chlorophenol 2-Nitrophenol	ug/L	<47		<95	<47	<47	<24		<48	<12		-	
8270D		ug/L	<47		<95	<47	<47	<24		<40	<10	<8.7	260	
8270D 8270D	3,3'-Dichlorobenzidine 4,6-Dinitro-2-methylphenol	ug/L	<94		<190	<95	<94	<48		<220	<55	<48	200	
8270D		ug/L	<47		<95	<47	<47	<24		<45	<11			
8270D	4-Bromophenyl phenyl ether	ug/L	<47		<95	<47	<47	<24		<45	<11	<9.8		
8270D 8270D	4-Chloro-3-methylphenol	ug/L ug/L	<47		<95	<47	<47	<24		<35	<8.8			
	4-Chlorophenyl phenyl ether	ug/L ug/L	16				<94	<48		<150	<38	<33		
8270D	4-Nitrophenol	ug/L ug/L	<47		 <95	<95 <47	<47	<46		<41	<10		-	
8270D	Acenaphthylana		<47				<47 <47	<24		< 38	< 10 < 9.5	<8.9		
8270D	Acenaphthylene	ug/L	<47		<95	<47	<47 <47			<38	< 7.0			3000
8270D	Anthracene	ug/L			<95	<47		<24				<6.1		3000
8270D	Benzidine	ug/L	<760 <47		<1500	<760	<750	<380		<220 <36	<55 <9.0	<48 <7.8		
8270D	Benzo(a)anthracene	ug/L			<95	<47	<47	<24				1	1	<u></u>
3270D	Benzo(a)pyrene	ug/L	<47		<95	5.4	<47	<24		<47	<12	<10	130	0.

	1		Existing Wells							ew Wells		_		
			LHW1	LHW2		g weils W3		W4	LHW5	LHW		LHW8	MMSD	NID 440
Method	Amalista	Units		9 5/14/2013 9/24/2019					5/14/2013 9/24/2019		2/18/2019	9/24/2019	Discharge Limit	NR 140 ES
8270D	Analyte Benzo(b)fluoranthene	ug/L	12	21	7.9	9/24/2019	5/14/2013 <47	9/24/2019	<24	- <34	<8.5	<7.4	LITTIL	- 0.2
8270D 8270D		ug/L	<47	<95	9.1		<47		<24	- <35	<8.8	<7.6		0.2
8270D 8270D	Benzo(ghi)perylene	ug/L	13	22	9.1		<47		<24	- <73	<18	<16		1
8270D 8270D	Benzo(k)fluoranthene	ug/L	<47	<95	<47		<47		<24	- <52	<13	<11		1
8270D 8270D	Bis(2-chloroisopropyl) ether	ug/L	<47				<47		<24	- <35	<8.8	<7.6		1
8270D 8270D	Bis(2-chloroethoxy)methane		<47	<95	<47		<47		<24	- <40	<10	<8.7		-
	Bis(2-chloroethyl)ether	ug/L	<47	<95	<47		<47		<24	- <220	95	<48		-
8270D 8270D	Bis(2-ethylhexyl) phthalate	ug/L	<47	<95	<47		<47		<24	- <100	<25	<22		-
8270D 8270D	Butyl benzyl phthalate	ug/L	<47	<95	<47		<47		<24	- <33	<8.3	<7.2	-	- 0.2
	Chrysene	ug/L	29	<95	<47		28		<24	- <42	<0.3	<9.1		. 0.2
8270D	Dibenzo(a,h)anthracene	ug/L	<47	<95	28		4.1				6.8	350		
8270D	Diethyl phthalate	ug/L	<47	<95	<47		<47		<24	- <22		<7.8		
8270D	Dimethyl phthalate	ug/L	<47	<95	<47				<24	- <36	< 9.0			
8270D	Di-n-butyl phthalate	ug/L		<95	<47		<47		<24	- <31	<7.8	<6.7		
8270D	Di-n-octyl phthalate	ug/L	<47	<95	<47		<47		<24	- <47	<12	<10		
8270D	Fluoranthene	ug/L	<47	<95	<47		<47		<24	- <40	<10	<8.7	130	
8270D	Fluorene	ug/L	<47	<95	<47		<47		<24	- <36	< 9.0	<7.8		- 400
8270D	Hexachlorobenzene	ug/L	<47	<95	<47		<47		<24	- <51	<13	<11	260	1 1
8270D	Hexachlorobutadiene	ug/L	<47	<95	<47		<47		<24	- <68	<17	<15		
8270D	Hexachlorocyclopentadiene	ug/L	<47	<95	<47		<47		<24	- <59	<15	<13		
8270D	Hexachloroethane	ug/L	<47	<95	<47		<47		<24	- <59	<15	<13		
8270D	Indeno(1,2,3-cd)pyrene	ug/L	26	<95	24		<47		<24	<17	<12	<10		
8270D	Isophorone	ug/L	<47	<95	<47		<47		<24	<43	<11	< 9.3		
8270D	m-Cresol	ug/L	<94	<190	< 95		<94		<48	- 230	560	<8.7		
8270D	Naphthalene	ug/L	<47	<95	20		43		10	340	220	250		- 100
8270D	Nitrobenzene	ug/L	<47	<95	<47		<47		<24	- <29	<7.3	<6.3		
8270D	N-Nitrosodimethylamine	ug/L	<94	<190	< 95		<94		<48	- <220	<55	<48		
8270D	N-Nitrosodi-n-propylamine	ug/L	<47	<95	<47		<47		<24	- <54	<14	<12		
8270D	N-Nitrosodiphenylamine	ug/L	<47	<95	5.4		12		<24	<51	<13	<11		- 7
8270D	o-Cresol	ug/L	3.9	8.7	<47		<47		<24	- <40	18	<8.7		
8270D	p-Cresol	ug/L	<94	<190	< 95		<94		<48	- 230	560	<7.8		
8270D	Pentachlorobenzene	ug/L	<94	<190	< 95		<94		<48	<53	<13	<12	260)
8270D	Pentachlorophenol	ug/L	<94	<190	< 95		<94		<48	<220	<55	<48		- 1
8270D	Phenanthrene	ug/L	<47	<95	<47		<47		<24	<44	<11	< 9.6		-
8270D	Phenol	ug/L	<47	8.7	<47		<47		<24	- 250	230	91		- 2000
8270D	Pyrene	ug/L	<47	<95	< 47		<47		<24	<34	<8.5	<7.4		- 250
Dioxins and Fu	urans	•			•								•	1
1613B	1,2,3,4,6,7,8-HpCDD	ng/L	<12	<12	<12		<12		<12	- 3.5	1.6	0.22		
1613B	1,2,3,4,7,8-HxCDD	ng/L	<12	<12	<12		<12		<12	- <0.0028	< 0.0077	0.0042		
1613B	1,2,3,6,7,8-HxCDD	ng/L	<12	<12	<12		<12		<12	- 0.15	0.09	0.0096		
1613B	1,2,3,7,8,9-HxCDD	ng/L	<12	<12	<12		<12		<12	- 0.1	0.09	0.012		
1613B	1,2,3,7,8-PeCDD	ng/L	<12	<12	<12		<12		<12	0.042	< 0.053	0.0056		
1613B	2,3,7,8-TCDD	ng/L	<4.9	<4.8	<4.9		<4.9		<4.9	0.012	< 0.0092	0.0014		- 0.03
1613B	OCDD	ng/L	<25	1.3	2.5		2.7		0.41	- 48	21	2.7		
1613B	Total HpCDD	ng/L	0	0	. 0		0		0	9.6	4	0.51		
1613B	Total HxCDD	ng/L	0	0	. 0		0		0	- 2.2	1.2	0.13		
1613B	Total PeCDD	ng/L	0	0	. 0		0		0	- 0.47	0.07	0.034		
1613B	Total TCDD	ng/L	0	0	. 0		0		0	- 0.18	0.044	0.033		
	Total Dioxin	ng/L	0	1.3	2.5		2.7		0.41	- 60	28.094	3.4	26,000	(
1613B	1,2,3,4,6,7,8-HpCDF	ng/L	<12	<12	<12		<12		<12	0.26	0.14	0.11		
1613B	1,2,3,4,7,8,9-HpCDF	ng/L	<12	<12	<12		<12		<12	0.044	<0.025	0.0053	-	+
1613B	1,2,3,4,7,8-HxCDF	ng/L	<12	<12	<12		<12		<12	0.063	0.051	0.044		+
1613B	1,2,3,6,7,8-HxCDF	ng/L	<12	<12	<12		<12		<12	0.15	0.49	0.017		+
1613B	1,2,3,7,8,9-HxCDF	ng/L	<12	<12	<12		<12		<12	<0.0009	<0.025	<0.0019		
1613B	1,2,3,7,8-PeCDF	ng/L	<12	<12	<12		<12		<12	<0.0056	<0.042	0.0078		
10130			<12		1		<12		<12	- <0.0038	<0.042	0.0078	<u> </u>	+
1613B	2,3,4,6,7,8-HxCDF	ng/L	< 1 / 1	<12	<12									

							Existing	g Wells						New Wells		MMSD	
			LH	W1	LH	W2	LH	W3	LH	W4	LH	W5	LH	IW7	LHW8	Discharge	NR 140
Method	Analyte	Units	5/14/2013	9/24/2019	5/14/2013	9/24/2019	5/14/2013	9/24/2019	5/14/2013	9/24/2019	5/14/2013	9/24/2019	9/24/2019	12/18/2019	9/24/2019	Limit	ES
1613B	2,3,7,8-TCDF	ng/L	<4.9		<4.8		<4.9		<4.9		<4.9		0.048	< 0.045	0.013		
1613B	OCDF	ng/L	<25		3		0.29		0.47		<25		0.6	0.34	0.087		
1613B	Total HpCDF	ng/L	0		0		0		0		0		0.99	0.48	0.19		
1613B	Total HxCDF	ng/L	0		0		0		0		0		2.8	4.9	0.18		
1613B	Total PeCDF	ng/L	0		0		0		0		0		8.7	20	0.26		
1613B	Total TCDF	ng/L	0		0		0		0		0		19	41	0.4		
	Total Furan	ng/L	0		3		0.29		0.47		0		32	67.401	1.1	26,000	
PBD Ethers																	
	2,2',3,4,4',5',6-HEPTABROMODIPHENYL ETHER	ng/L	< 0.136		< 0.136		< 0.137		< 0.136		< 0.135						
	2,2',3,4,4',5-HEXABROMODIPHENYL ETHER	ng/L	< 0.0765		< 0.0765		< 0.0771		<0.0766		< 0.0765						
	2,2',3,4,4'-PENTABROMODIPHENYL ETHER	ng/L	< 0.0969		< 0.0968		< 0.0976		< 0.0969		<0.0968						
	2,2',4,4',5',6-HEXABROMODIPHENYL ETHER	ng/L	<0.116		< 0.116		< 0.117		<0.116		<0.116						
	2,2',4,4',5,5'-HEXABROMODIPHENYL ETHER	ng/L	0.15		< 0.116		< 0.117		<0.116		<0.116						
	2,2',4,4',5-PENTABROMODIPHENYL ETHER	ng/L	<0.591		< 0.591		< 0.595		<0.591		<0.59						
	2,2',4,4',6-PENTABROMODIPHENYL ETHER	ng/L	< 0.145		< 0.145		< 0.146		< 0.145		< 0.145						
	2,2',4,4'-TETRABROMODIPHENYL ETHER	ng/L	< 0.969		< 0.968		< 0.976		< 0.969		< 0.968						
	2,3',4,4'-TETRABROMODIPHENYL ETHER	ng/L	< 0.0484		< 0.0484		<0.0488		<0.0485		<0.0484						
	2,4,4'-TRIBROMODIPHENYL ETHER	ng/L	< 0.0969		<0.0968		< 0.0976		< 0.0969		<0.0968						
	DECABROMODIPHENYL ETHER	ng/L	6.36		5.36		<4.88		<4.85		<4.84						
	PBD Ethers (Total)	ng/L	6.51		5.36		0		0		0					1,000	

3.6 Orange highlighted cell indicates result exceeds MMSD discharge limit.

187 Yellow highlighted cell indicates result exceeds NR 140 groundwater enforcement standard.

187 Bold value indicates constituent was detected.

mg/L = milligrams per liter (parts per million) ug/L = micrograms per liter (parts per billion)

ng/L = nanograms per liter (parts per trillion)

MMSD = Milwaukee Metropolitan Sewerage District

Prepared by: SCC, TK 12/31/19, SCC 1/21/2020, AJR 1/22/2020, LMH 1/23/2020 Checked by: LMH 1/23/2020

I:\25218040.01\Deliverables\Waste Invest Report\Tables\[Table 8_Leachate_MMSD_r1.xlsx]Leachate Results

Table 9. Gas Probe Monitoring Data: 2017 - 2019 WMWI Boundary Road Landfill / SCS Project #25218040.01

		Methane	Oxygen	Soil Gas Pressure
Point Name	Sample Date	(% vol)	(% vol)	(inches of water)
GP-1	3/21/2017	0.0	11.1	0.55
(LPG01)	6/23/2017	0.0	15.4	0.59
	9/13/2017	0.0	19.0	0.23
	12/18/2017	0.1	20.4	-4.89
	3/21/2018	0.2	17.2	-0.97
	6/13/2018	0.0	16.8	0.04
	9/17/2018	0.0	21.6	0.05
	12/7/2018	0.1	22.1	0.82
GP01RB	3/19/2019	0.2	11.7	0.00
(LPG01R)	6/6/2019	0.0	22.8	-0.01
	9/5/2019	0.0	19.6	0.62
	12/9/2019	0.1	14.9	-0.01
GP-3	3/21/2017	0.0	11.1	0.65
(LPG3)	6/23/2017	0.0	18.8	-0.64
	9/13/2017	0.0	18.6	0.22
	12/18/2017	0.1	20.0	0.01
	3/21/2018	0.1	21.0	0.40
	6/13/2018	0.0	16.5	0.04
	9/17/2018	0.0	21.7	0.04
	12/7/2018	0.0	16.3	0.81
	3/19/2019	0.0	10.3	-0.01
	6/6/2019	0.0	22.8	0.00
	9/5/2019	0.0	15.8	0.63
	12/9/2019	0.0	14.9	-0.01
GP-4	3/21/2017	0.0	11.1	1.99
(LPG4)	6/23/2017	0.0	19.3	-0.47
	9/13/2017	0.0	18.4	-1.14
	12/18/2017	0.0	19.9	0.01
	3/21/2018	0.0	4.0	0.41
	6/13/2018	0.0	16.3	0.04
	9/17/2018	0.0	21.8	0.05
	12/7/2018	0.0	14.8	0.85
	3/19/2019	0.0	10.2	0.00
	6/6/2019	0.0	22.7	0.00
	9/5/2019	0.0	15.0	0.62
	12/9/2019	0.0	15.0	0.01

Table 9. Gas Probe Monitoring Data: 2017 - 2019 WMWI Boundary Road Landfill / SCS Project #25218040.01

Point Name	Sample Date	Methane (% vol)	Oxygen (% vol)	Soil Gas Pressure (inches of water)
GP-5	3/21/2017	0.0	11.1	-1.76
(LPG5)	6/23/2017	0.0	19.3	-4.29
(1.00)	9/13/2017	0.0	16.2	0.23
	12/18/2017	0.0	20.0	0.00
	3/21/2018	0.2	16.5	0.42
	6/13/2018	0.0	20.4	0.05
	9/17/2018	0.0	21.8	0.05
	12/7/2018	0.0	13.4	0.86
	3/19/2019	0.2	10.1	0.00
	6/6/2019	0.0	22.7	0.00
	9/5/2019	0.0	13.7	0.63
	12/9/2019	0.0	15.0	0.00
GP-6	3/21/2017	0.0	11.1	1.02
(LPG6)	6/23/2017	0.0	19.3	-2.69
	9/13/2017	0.0	19.5	0.23
	12/18/2017	0.0	20.0	0.00
	3/21/2018	0.2	16.4	-0.72
	6/13/2018	0.0	20.7	0.02
	9/17/2018	0.0	21.6	0.05
	12/7/2018	0.0	12.6	0.86
	3/19/2019	0.0	10.1	0.00
	6/6/2019	0.0	22.7	0.00
	9/5/2019	0.0	12.4	0.63
	12/9/2019	0.0	15.7	0.00
GP-7	3/21/2017	0.0	11.2	1.99
(LPG7)	6/23/2017	0.0	19.4	-2.26
	9/13/2017	0.0	19.4	0.24
	12/18/2017	0.2	20.0	0.00
	3/21/2018	0.2	17.4	-0.64
	6/13/2018	0.0	20.8	0.01
	9/17/2018	0.0	21.7	0.05
	12/7/2018	0.2	12.4	0.86
	3/19/2019	0.2	10.1	0.00
	6/6/2019	0.0	22.5	0.00
	9/8/2019	0.0	11.7	0.62
	12/9/2019	0.0	14.4	0.00

Note: Routine monitoring data downloaded from WDNR Groundwater and Environmental Monitoring System online database on 1/29/2020. Q4 2019 data provided by WMWI.

Created by: SCC, 1/30/2020 Rev by: LMH, 3/20/2020

Checked by: TK, 2/5/2020; SCC, 3/20/2020

I:\25218040.01\Deliverables\Waste Invest Report\Tables\[Tables-9-14.xlsx]GP

Table 10. Landfill Gas Flare Monitoring Data: 2017 - 2019 WMWI Boundary Road Landfill / SCS Project #25218040.01

N	0 1 0 1	Gas Flow Rate	Methane	Oxygen
Point Name	Sample Date	(cfm)	(% vol)	(% vol)
Flare	1/2/2017	78	48.4	0.5
	2/21/2017	22	22.5	3.2
	3/6/2017	118	46.1	0.9
	4/3/2017	114	32.0	0.7
	5/2/2017	105	32.0	2.0
	6/1/2017	109	25.5	2.3
	7/6/2017	112	25.4	1.9
	8/1/2017	119	50.2	0.5
	9/1/2017	119	48.8	0.7
	10/2/2017	115	25.3	2.7
	11/2/2017	115	32.3	3.0
	12/4/2017	110	37.1	1.6
	1/2/2018	80	48.8	0.4
	2/13/2018	116	39.8	1.6
	3/1/2018	111	34.6	2.6
	4/2/2018	112	45.7	0.9
	5/8/2018	112	33.1	2.1
	6/1/2018	108	26.1	3.2
	7/2/2018	112	40.1	1.0
	8/8/2018	108	24.3	2.1
	9/10/2018	113	37.5	1.3
	10/2/2018	106	27.2	1.5
	11/1/2018	105	28.7	1.4
	12/3/2018	110	27.4	1.7
	1/16/2019	65	31.0	2.2
	2/27/2019	71	42.5	1.1
	3/6/2019	74	47.5	1.5
	4/1/2019	70	28.0	1.6
	5/31/2019	28	47.7	0.6
	6/19/2019	0	29.3	1.3
	7/31/2019	0	25.5	1.9
	8/30/2019	63	22.5	2.9
	9/27/2019	65	28.3	1.7
	10/31/2019	116	43.2	0.3
	11/22/2019	104	41.8	1.2
	12/30/2019	106	48.4	0.8
	Average	91	35.4	1.6

Note: Routine monitoring data downloaded from WDNR Groundwater and Environmental Monitoring System online database on 1/29/2020. Q4 2019 data provided by WMWI.

Created by: SCC, 1/30/2020 Rev. by: LMH, 3/20/2020

Checked by: TK, 2/5/2020; SCC, 3/20/2020

 $I:\25218040.01\Deliverables\Waste\ Invest\ Report\Tables\[Tables-9-14.xlsx]Flare$

Table 11. Leachate/Groundwater Collection Trench Discharge Data: 2017 - 2019 WMWI Boundary Road Landfill / SCS Project #25218040.01

			Sample Date	9	MMSD		
Point					Discharge	NR 140	NR 140
Name	Parameter Description	9/1/2017	9/4/2018	9/3/2019	Limit	ES	PAL
Manhole	pH, Field (Standard Units)	6.25	6.72	6.86			
MH03	Specific Conductance, Field (umho/cm @ 25C)	818	552	3440			
(LMP01)	Temperature (degrees C)	14.2	19.6	17.5			
	Alkalinity, Total (mg/L as CaCO3)	331	307	1500			
	Chloride (mg/L CI)	25.6	8.5	847		250	125
	Fluoride, Total (mg/L F)	0.16	ND	ND		4	0.8
	Hardness, Total (mg/L as CaCO3)	310	296	204			
	Sulfate, Total (mg/L)	17.9	8.1	30.7		250	125
	Aluminum, Total (ug/L)	ND	163	411		200	40
	Antimony, Total (ug/L)	ND	0.87	0.77		6	1.2
	Arsenic, Total (ug/L)	0.67	0.9	5.5	600	10	1.0
	Barium, Total (ug/L)	133	71.6	71.2		2000	400
	Boron, Total (mg/L)	0.14	0.053	0.09		1	0.2
	Cadmium, Total (ug/L)	ND	ND	ND	1500	5	0.5
	Chromium, Total (ug/L)	ND	ND	ND	64000	100	10
	Iron, Total (mg/L)	0.2	0.28	0.39		0.3	0.15
	Manganese, Total (ug/L)	15.6	46.6	14.1		50	25
	Selenium, Total (ug/L)	ND	ND	0.45		50	10
	Sodium, Total (mg/L)	20.8	6.4	7.4			
	Detected Volatile Organic Compounds						
	Acetone (ug/L)	ND	5.3	12		9000	1800
	Benzene (ug/L)	ND	ND	30		5	0.5
	Chlorobenzene (ug/L)	ND	ND	19			
	Chloroethane (ug/L)	14	3.3	37		400	80
	Dichloromethane (ug/L)	ND	ND	4.4		5	0.5
	m-Dichlorobenzene (ug/L)	ND	ND	3.1		600	120
	Tetrahydrofuran (ug/L)	ND	ND	57		50	10
	Xylene (ug/L)	ND	ND	5.2		2000	400

mg/L = milligrams per liter ug/L = micrograms per liter ND = Not detected PAL = Preventive Action Limit ES = Enforcement Standard -- = No standard or limit established

3.4 Orange highlighted cell indicates result exceeds MMSD limit (no exceedances for these results)

1.1 Yellow highlighted cell indicates result exceeds NR 140 ES

0.99 Blue highlighted cell indicates result exceeds NR 140 PAL

Note: Routine monitoring data downloaded from WDNR Groundwater and Environmental Monitoring System online database on 1/29/2020. Samples are collected from Manhole 3 where leachate/groundwater from the collection trench enters the forcemain to be discharged to Milwaukee Metropolitan Sewerage District (MMSD).

Created by: SCC, 1/30/2020 Checked by: TK, 2/5/2020

I:\25218040.01\Deliverables\Waste Invest Report\Tables\[Tables-9-14.xlsx]Leachate

Table 12. Groundwater Monitoring Data: 2017 - 2019 WMWI Boundary Road Landfill / SCS Project #25218040.01

Point Name	Analysis Method	Parameter	3/1/2017	9/5/2017	3/1/2018	9/4/2018	3/4/2019	9/3/2019	NR 140 PAL	NR 140 ES
TW5R	300	Fluoride, dissolved (mg/L)	<1.3	0.34	<0.26	0.3	0.39	0.38	0.8	4.0
	310.2	Alkalinity, total filtered (mg/L)	576	508	535	612	607	544		
	4110B	Chloride, dissolved (mg/L)	667	700	693	683	638	705	125	250
	4110B	Sulfate, dissolved (mg/L)	112	124	131	119	92.8	78.9	125	250
	6010B	Hardness, total filtered (mg/L)	977	852	804	880	826	978		
	6010C	Boron, dissolved (mg/L)	0.54	0.58	0.52	0.58	0.5	0.59	0.2	1.0
	6010C	Sodium, dissolved (mg/L)	360	312	294	315	272	342		
		Detected VOCs								
	8260C	Dichloromethane (ug/L)	NA	< 0.44	NA	<2.2	NA	2.6	0.5	5.0
TW-9RR	300	Fluoride, dissolved (mg/L)	0.13	0.23	0.43	0.44	0.31	< 0.13	0.8	4.0
	310.2	Alkalinity, total filtered (mg/L)	630	860	849	654	870	843		
	4110B	Chloride, dissolved (mg/L)	57.4	130	153	84.8	151	211	125	250
	4110B	Sulfate, dissolved (mg/L)	352	13.2	<1.7	7.9	<1.7	<1.7	125	250
	6010B	Hardness, total filtered (mg/L)	871	565	562	419	591	715		
	6010C	Boron, dissolved (mg/L)	0.3	0.78	0.78	0.5	0.8	1.2	0.2	1.0
	6010C	Sodium, dissolved (mg/L)	67.1	126	145	83.4	135	189		
		Detected VOCs								
	8260C	Carbon Disulfide (ug/L)	NA	< 0.95	NA	1.1	NA	< 0.95	200	1000
	8260C	Tetrahydrofuran (ug/L)	NA	<6.3	NA	<6.3	NA	7.5	10	50
TW-16R	300	Fluoride, dissolved (mg/L)	0.14	0.22	0.15	0.24	0.13	0.21	8.0	4.0
	310.2	Alkalinity, total filtered (mg/L)	190	346	148	200	229	229		
	4110B	Chloride, dissolved (mg/L)	25.1	24.5	16.8	16.4	18.8	17	125	250
	4110B	Sulfate, dissolved (mg/L)	8.4	1.9	4.9	4.6	5.1	0.49	125	250
	6010B	Hardness, total filtered (mg/L)	183	327	146	178	211	248		
	6010C	Boron, dissolved (mg/L)	0.053	0.12	0.046	0.12	0.033	0.1	0.2	1.0
	6010C	Sodium, dissolved (mg/L)	16.8	23.7	14.5	13.8	15	17.1		
		Detected VOCs								
	8260C	Dichloromethane (ug/L)	NA	0.49	NA	<0.44	NA	< 0.44	0.5	5.0

Table 12. Groundwater Monitoring Data: 2017 - 2019 WMWI Boundary Road Landfill / SCS Project #25218040.01

Point	Analysis								NR 140	NR 140
Name	Method	Parameter	3/1/2017	9/5/2017	3/1/2018	9/4/2018	3/4/2019	9/3/2019	PAL	ES
TW-24R	300	Fluoride, dissolved (mg/L)	0.25	0.31	<0.26	0.3	0.52	<0.26	0.8	4.0
	310.2	Alkalinity, total filtered (mg/L)	918	1160	910	954	1050	998		
	4110B	Chloride, dissolved (mg/L)	432	449	462	403	446	290	125	250
	4110B	Sulfate, dissolved (mg/L)	16.2	18.2	169	68.4	11.5	17.3	125	250
	6010B	Hardness, total filtered (mg/L)	623	686	707	646	695	667		
	6010C	Boron, dissolved (mg/L)	1.4	2	1.9	1.5	1.7	1.8	0.2	1.0
	6010C	Sodium, dissolved (mg/L)	323	400	396	330	382	354		
		Detected VOCs								
	8260C	Benzene (ug/L)	NA	2.5	NA	<2.1	NA	<2.1	0.5	5.0
	8260C	Chloroethane (ug/L)	NA	2.5	NA	<1.6	NA	<1.6	80	400
P101	300	Fluoride, dissolved (mg/L)	0.64	0.72	0.66	0.7	0.7	0.72	0.8	4.0
	310.2	Alkalinity, total filtered (mg/L)	133	126	133	129	139	127		
	4110B	Chloride, dissolved (mg/L)	4.7	1.3	1.3	1.5	1.4	1.5	125	250
	4110B	Sulfate, dissolved (mg/L)	12.2	12	10.6	12.3	12.4	13	125	250
	6010B	Hardness, total filtered (mg/L)	84.5	87.2	80.5	80.7	85.9	92.7		
	6010C	Boron, dissolved (mg/L)	0.16	0.16	0.15	0.15	0.16	0.16	0.2	1.0
	6010C	Sodium, dissolved (mg/L)	27.5	27.2	25.2	24	25.8	25.9		
		Detected VOCs								
		None								
P102	300	Fluoride, dissolved (mg/L)	0.29	0.32	0.28	0.29	0.25	0.35	8.0	4.0
	310.2	Alkalinity, total filtered (mg/L)	253	254	249	243	246	217		
	4110B	Chloride, dissolved (mg/L)	30.7	28.4	26.7	28.3	30.9	21.9	125	250
	4110B	Sulfate, dissolved (mg/L)	61.8	58.8	56.4	57.5	54.3	51.7	125	250
	6010B	Hardness, total filtered (mg/L)	284	297	281	284	275	285		
	6010C	Boron, dissolved (mg/L)	0.06	0.07	0.067	0.072	0.088	0.078	0.2	1.0
	6010C	Sodium, dissolved (mg/L)	14.6	16	16.3	16.4	18	17.1		
		Detected VOCs								
	8260C	Acetone (ug/L)	NA	3.2	NA	<3	NA	<3	1800	9000

Table 12. Groundwater Monitoring Data: 2017 - 2019 WMWI Boundary Road Landfill / SCS Project #25218040.01

Point	Analysis								NR 140	NR 140
Name	Method	Parameter	3/1/2017	9/5/2017	3/1/2018	9/4/2018	3/4/2019	9/3/2019	PAL	ES
P103R	300	Fluoride, dissolved (mg/L)	0.73	0.77	0.9	0.73	0.96	1.1	0.8	4.0
	310.2	Alkalinity, total filtered (mg/L)	479	478	534	567	553	512		
	4110B	Chloride, dissolved (mg/L)	569	537	576	617	579	605	125	250
	4110B	Sulfate, dissolved (mg/L)	<1.7	<3.5	<1.7	<3.5	<3.5	<3.5	125	250
	6010B	Hardness, total filtered (mg/L)	343	331	358	397	385	427		
	6010C	Boron, dissolved (mg/L)	1.8	1.8	1.9	1.9	1.9	2.2	0.2	1.0
	6010C	Sodium, dissolved (mg/L)	381	366	400	418	397	443		
		Detected VOCs								
	8260C	Tetrahydrofuran (ug/L)	NA	20	NA	20	NA	24	10	50
P104R	300	Fluoride, dissolved (mg/L)	0.89	0.94	0.89	0.93	0.91	0.96	0.8	4.0
	310.2	Alkalinity, total filtered (mg/L)	113	111	103	117	120	104		
	4110B	Chloride, dissolved (mg/L)	1.8	1.4	1.5	1.7	1.5	1.4	125	250
	4110B	Sulfate, dissolved (mg/L)	5.1	3.3	2.9	3.7	3.2	3.7	125	250
	6010B	Hardness, total filtered (mg/L)	46	37.8	37.8	39.4	36.9	38.3		
	6010C	Boron, dissolved (mg/L)	0.21	0.22	0.21	0.21	0.21	0.23	0.2	1.0
	6010C	Sodium, dissolved (mg/L)	36.5	36.7	36.7	36	36.2	36.4		
		Detected VOCs								
		None								
MW 107	300	Fluoride, dissolved (mg/L)	0.096	0.17	0.092	0.14	< 0.13	< 0.13	0.8	4.0
	310.2	Alkalinity, total filtered (mg/L)	340	423	317	288	383	394		
	4110B	Chloride, dissolved (mg/L)	99.2	76.3	144	27.7	380	221	125	250
	4110B	Sulfate, dissolved (mg/L)	18.7	20.5	25.7	15	44.2	110	125	250
	6010B	Hardness, total filtered (mg/L)	319	342	383	264	456	551		
	6010C	Boron, dissolved (mg/L)	0.12	0.31	0.094	0.1	0.07	0.16	0.2	1.0
	6010C	Sodium, dissolved (mg/L)	49.4	66.8	57.4	20.4	202	139		
		Detected VOCs								
	8260C	Chlorobenzene (ug/L)	NA	1.5	NA	<0.75	NA	< 0.75		
	8260C	Tetrahydrofuran (ug/L)	NA	1.4	NA	<1.3	NA	<1.3	10	50

Table 12. Groundwater Monitoring Data: 2017 - 2019 WMWI Boundary Road Landfill / SCS Project #25218040.01

Point	Analysis								NR 140	NR 140
Name	Method	Parameter	3/1/2017	9/5/2017	3/1/2018	9/4/2018	3/4/2019	9/3/2019	PAL	ES
P107	300	Fluoride, dissolved (mg/L)	0.7	0.78	0.79	0.77	0.72	0.78	0.8	4.0
	310.2	Alkalinity, total filtered (mg/L)	494	522	481	412	445	397		
	4110B	Chloride, dissolved (mg/L)	61.3	60	59.6	63.5	64.1	63.8	125	250
	4110B	Sulfate, dissolved (mg/L)	0.71	0.52	< 0.35	< 0.35	< 0.7	<1.7	125	250
	6010B	Hardness, total filtered (mg/L)	292	293	262	251	252	257		
	6010C	Boron, dissolved (mg/L)	0.92	0.95	0.9	0.9	0.96	1	0.2	1.0
	6010C	Sodium, dissolved (mg/L)	86.9	90.3	86.4	89.5	95.6	99.2		
		Detected VOCs								
	8260C	Dichloromethane (ug/L)	NA	0.63	NA	<0.44	NA	<1.8	0.5	5.0
	8260C	Tetrahydrofuran (ug/L)	NA	7.8	NA	7.2	NA	7.2	10	50
MW110	300	Fluoride, dissolved (mg/L)	< 0.13	0.13	< 0.13	0.16	< 0.13	< 0.13	0.8	4.0
	310.2	Alkalinity, total filtered (mg/L)	388	382	381	372	359	365		
	4110B	Chloride, dissolved (mg/L)	147	147	152	156	155	158	125	250
	4110B	Sulfate, dissolved (mg/L)	166	167	180	168	174	189	125	250
	6010B	Hardness, total filtered (mg/L)	541	560	526	526	537	608		
	6010C	Boron, dissolved (mg/L)	0.14	0.17	0.16	0.16	0.16	0.18	0.2	1.0
	6010C	Sodium, dissolved (mg/L)	82.1	93.8	88.2	85.9	88.8	100		
		Detected VOCs								
	8260C	Chloroethane (ug/L)	NA	0.67	NA	<0.32	NA	< 0.32	80	400
MW111	300	Fluoride, dissolved (mg/L)	<0.26	<0.26	< 0.52	<0.26	<0.26	< 0.52	8.0	4.0
	310.2	Alkalinity, total filtered (mg/L)	776	683	774	673	734	655		
	4110B	Chloride, dissolved (mg/L)	637	736	636	848	550	794	125	250
	4110B	Sulfate, dissolved (mg/L)	122	167	189	101	115	109	125	250
	6010B	Hardness, total filtered (mg/L)	730	728	706	675	660	830		
	6010C	Boron, dissolved (mg/L)	0.97	0.97	1.1	0.99	0.93	1.1	0.2	1.0
	6010C	Sodium, dissolved (mg/L)	411	454	425	475	366	474		
		Detected VOCs								
	8260C	Chlorobenzene (ug/L)	NA	4.3	NA	3.5	NA	3.3		
	8260C	Dichloromethane (ug/L)	NA	3	NA	<1.8	NA	<1.8	0.5	5.0
	8260C	Tetrahydrofuran (ug/L)	NA	13	NA	16	NA	18	10	50

Table 12. Groundwater Monitoring Data: 2017 - 2019 WMWI Boundary Road Landfill / SCS Project #25218040.01

Point Name	Analysis Method	Parameter	3/1/2017	9/5/2017	3/1/2018	9/4/2018	3/4/2019	9/3/2019	NR 140 PAL	NR 140 ES
MW-116	300	Fluoride, dissolved (mg/L)	0.16	0.2	< 0.13	0.24	0.15	< 0.13	0.8	4.0
	310.2	Alkalinity, total filtered (mg/L)	439	428	432	435	513	334		
	4110B	Chloride, dissolved (mg/L)	211	154	145	127	163	163	125	250
	4110B	Sulfate, dissolved (mg/L)	203	138	155	103	109	61.2	125	250
	6010B	Hardness, total filtered (mg/L)	703	549	526	514	629	464		
	6010C	Boron, dissolved (mg/L)	0.076	0.083	0.087	0.11	0.066	0.13	0.2	1.0
	6010C	Sodium, dissolved (mg/L)	102	91.6	81.9	77.3	94.2	86.8		
		Detected VOCs								
	8260C	Dichloromethane (ug/L)	NA	5.3	NA	<1.8	NA	<1.8	0.5	5.0
MW-117	300	Fluoride, dissolved (mg/L)	0.2	<1.3	1	1.1	<1.3	<1.3	0.8	4.0
(note 2)	310.2	Alkalinity, total filtered (mg/L)	453	459	119	571	493	495		
	4110B	Chloride, dissolved (mg/L)	1160	4270	1.9	312	3460	3910	125	250
	4110B	Sulfate, dissolved (mg/L)	90.1	117	8.2	118	76.9	71.4	125	250
	6010B	Hardness, total filtered (mg/L)	1010	2260	43.2	218	1150	1740		
	6010C	Boron, dissolved (mg/L)	0.18	0.46	0.19	0.16	0.12	0.41	0.2	1.0
	6010C	Sodium, dissolved (mg/L)	911	1910	39.4	376	1810	1920		
		Detected VOCs								
	8260C	1,1,1-Trichloroethane (ug/L)	NA	13	NA	<6.6	NA	<6.6	40	200
	8260C	1,1-Dichloroethane (ug/L)	NA	60	NA	<3	NA	31	85	850
	8260C	1,1-Dichloroethene (ug/L)	NA	0.66	NA	<2.3	NA	<2.3	0.7	7.0
	8260C	1,2-Dichloroethane (ug/L)	NA	2	NA	<1.7	NA	<1.7	0.5	5.0
	8260C	Benzene (ug/L)	NA	1.1	NA	<3.3	NA	<3.3	0.5	5.0
	8260C	Chloroform (ug/L)	NA	6.6	NA	17	NA	<2.7	0.6	6.0
	8260C	cis-1,2-Dichloroethene (ug/L)	NA	3.8	NA	< 6.5	NA	<6.5	7	70
	8260C	Dichloromethane (ug/L)	NA	1.9	NA	4.3	NA	< 3.5	0.5	5.0

Table 12. Groundwater Monitoring Data: 2017 - 2019 WMWI Boundary Road Landfill / SCS Project #25218040.01

Point Name	Analysis Method	Parameter	3/1/2017	9/5/2017	3/1/2018	9/4/2018	3/4/2019	9/3/2019	NR 140 PAL	NR 140 ES
P117	300	Fluoride, dissolved (mg/L)	0.99	1.1	<2.6	1.0	1.0	1.0	0.8	4.0
(note 2)	310.2	Alkalinity, total filtered (mg/L)	120	121	471	122	115	104		
	4110B	Chloride, dissolved (mg/L)	1.4	1.3	5140	1.4	1.6	1.3	125	250
	4110B	Sulfate, dissolved (mg/L)	7.8	8.1	115	8.6	8	8.9	125	250
	6010B	Hardness, total filtered (mg/L)	41.4	44.2	2170	40.8	45.6	47.5		
	6010C	Boron, dissolved (mg/L)	0.17	0.19	0.31	0.17	0.19	0.2	0.2	1.0
	6010C	Sodium, dissolved (mg/L)	35.7	38	1880	35.2	39.2	37.9		
		Detected VOCs								
		None								

VOC = Volatile organic compound --- = No NR 140 standard established PAL = Preventive Action Limit mg/L = milligrams per liter

ES = Enforcement Standard ug/L = micrograms per liter

NA = Not analyzed

1.1 Yellow highlighted cell indicates result exceeds NR 140 ES

0.99 Blue highlighted cell indicates result exceeds NR 140 PAL

Note:

- 1. Routine monitoring data downloaded from WDNR Groundwater and Environmental Monitoring System online database on 1/29/2020.
- 2. Results for MW-117 and P117 for March 2018 appear to have been switched during sampling, analysis, or reporting.

Created by: SCC, 1/30/2020 Checked by: TK, 2/5/2020

I:\25218040.01\Deliverables\Waste Invest Report\Tables\[Tables-9-14.xlsx]MW

Table 13. Private Well Monitoring Data: 2017 - 2019 WMWI Boundary Road Landfill / SCS Project #25218040.01

Point	Analysis					NR 140	NR 140
Name	Method	Parameter	9/6/2017	9/12/2018	9/6/2019	PAL	ES
PW-7	300	Fluoride, total (mg/L)	0.65	0.6	0.55	0.8	4.0
	310.2	Alkalinity, total (mg/L)	183	184	176		
	4110B	Chloride, total (mg/L)	34.8	32.8	35.9	125	250
	4110B	Sulfate, total (mg/L)	105	78.7	102	125	250
	6010B	Hardness, total (mg/L)	249	226	240		
	6010C	Aluminum, total (ug/L)	<60	<60	<60	40	200
	6010C	Barium, total (ug/L)	32	25.7	30.5	400	2000
	6010C	Boron, total (mg/L)	0.26	0.23	0.24	0.2	1.0
	6010C	Chromium, total (ug/L)	<1	<1	<1	10	100.0
	6010C	Iron, total (mg/L)	1.4	1	2.3	0.15	0.3
	6010C	Manganese, total (ug/L))	18.7	27.6	17.2	25	50
	6010C	Sodium, total (mg/L)	32.6	31.7	29.1		
	6020A	Antimony, total (ug/L)	< 0.35	< 0.4	< 0.35	1.2	6.0
	6020A	Arsenic, total (ug/L)	6.4	7.4	8.5	1.0	10
	6020A	Cadmium, total (ug/L)	< 0.071	<0.27	0.12	0.5	5.0
	6020A	Selenium, total (ug/L)	< 0.44	<0.7	<0.44	10	50
		Detected VOCs					
	8260C	Acetone (ug/L)	<3	3.2	<3	1800	9000
	8260C	Carbon disulfide (ug/L)	< 0.19	0.61	< 0.19	200	1000
PW-8	300	Fluoride, total (mg/L)	0.74	0.66	0.64	8.0	4.0
	310.2	Alkalinity, total (mg/L)	166	178	159		
	4110B	Chloride, total (mg/L)	27	27.7	25.4	125	250
	4110B	Sulfate, total (mg/L)	95.5	90.9	86.8	125	250
	6010B	Hardness, total (mg/L)	211	222	194		
	6010C	Aluminum, total (ug/L)	<60	<60	<60	40	200
	6010C	Barium, total (ug/L)	42.6	42.6	49.4	400	2000
	6010C	Boron, total (mg/L)	0.28	0.26	0.27	0.2	1.0
	6010C	Chromium, total (ug/L)	<1	<1	<1	10	100.0
	6010C	Iron, total (mg/L)	1.2	0.97	7.4	0.15	0.3
	6010C	Manganese, total (ug/L))	19.1	20.3	22.6	25	50
	6010C	Sodium, total (mg/L)	36.8	34.1	34.2		
	6020A	Antimony, total (ug/L)	< 0.35	< 0.4	< 0.35	1.2	6.0
	6020A	Arsenic, total (ug/L)	7.7	6.2	31	1.0	10
	6020A	Cadmium, total (ug/L)	< 0.071	<0.27	<0.071	0.5	5.0
	6020A	Selenium, total (ug/L)	< 0.44	< 0.7	<0.44	10	50
		Detected VOCs					
	8260C	Acetone (ug/L)	<3	5.2	<3	1800	9000

Table 13. Private Well Monitoring Data: 2017 - 2019 WMWI Boundary Road Landfill / SCS Project #25218040.01

Point Name	Analysis Method	Parameter Parame	9/6/2017	9/12/2018	9/6/2019	NR 140 PAL	NR 140 ES
PW-9	300	Fluoride, total (mg/L)	0.74	0.7	0.61	0.8	4.0
	310.2	Alkalinity, total (mg/L)	171	184	174		
	4110B	Chloride, total (mg/L)	27.6	30.5	32.2	125	250
	4110B	Sulfate, total (mg/L)	62.2	72.5	82.7	125	250
	6010B	Hardness, total (mg/L)	186	206	207		
	6010C	Aluminum, total (ug/L)	<60	<60	<60	40	200
	6010C	Barium, total (ug/L)	30	29.4	31.4	400	2000
	6010C	Boron, total (mg/L)	0.22	0.22	0.23	0.2	1.0
	6010C	Chromium, total (ug/L)	<1	<1	<1	10	100.0
	6010C	Iron, total (mg/L)	1	0.83	1.2	0.15	0.3
	6010C	Manganese, total (ug/L))	16.8	9.3	13.5	25	50
	6010C	Sodium, total (mg/L)	36.7	35.3	32.2		
	6020A	Antimony, total (ug/L)	< 0.35	< 0.4	< 0.35	1.2	6.0
	6020A	Arsenic, total (ug/L)	8.3	8.3	8.5	1.0	10
	6020A	Cadmium, total (ug/L)	< 0.071	< 0.27	< 0.071	0.5	5.0
	6020A	Selenium, total (ug/L)	< 0.44	< 0.7	< 0.44	10	50
		Detected VOCs	_		_		_
	8260C	Acetone (ug/L)	<3	3.3	<3	1800	9000

VOC = Volatile organic compound -- = No NR 140 standards established mg/L = milligrams per liter PAL = Preventive Action Limit ES = Enforcement standard ug/L = micrograms per liter

1.1 Yellow highlighted cell indicates result exceeds NR 140 ES

0.99 Blue highlighted cell indicates result exceeds NR 140 PAL

Note: Routine monitoring data downloaded from WDNR Groundwater and Environmental Monitoring System online database on 1/29/2020.

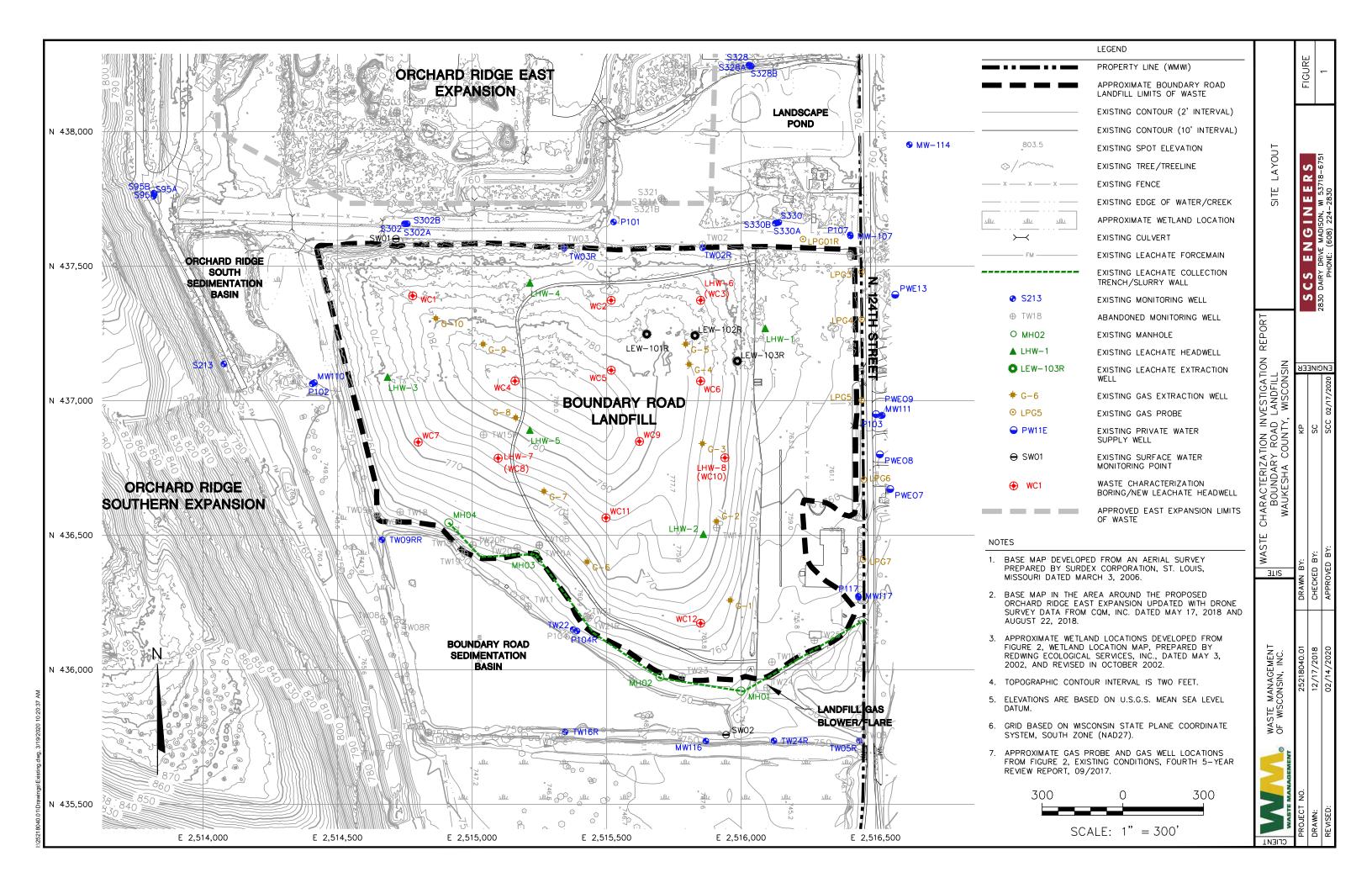
Created by: SCC, 1/30/2020 Checked by: TK, 2/5/2020

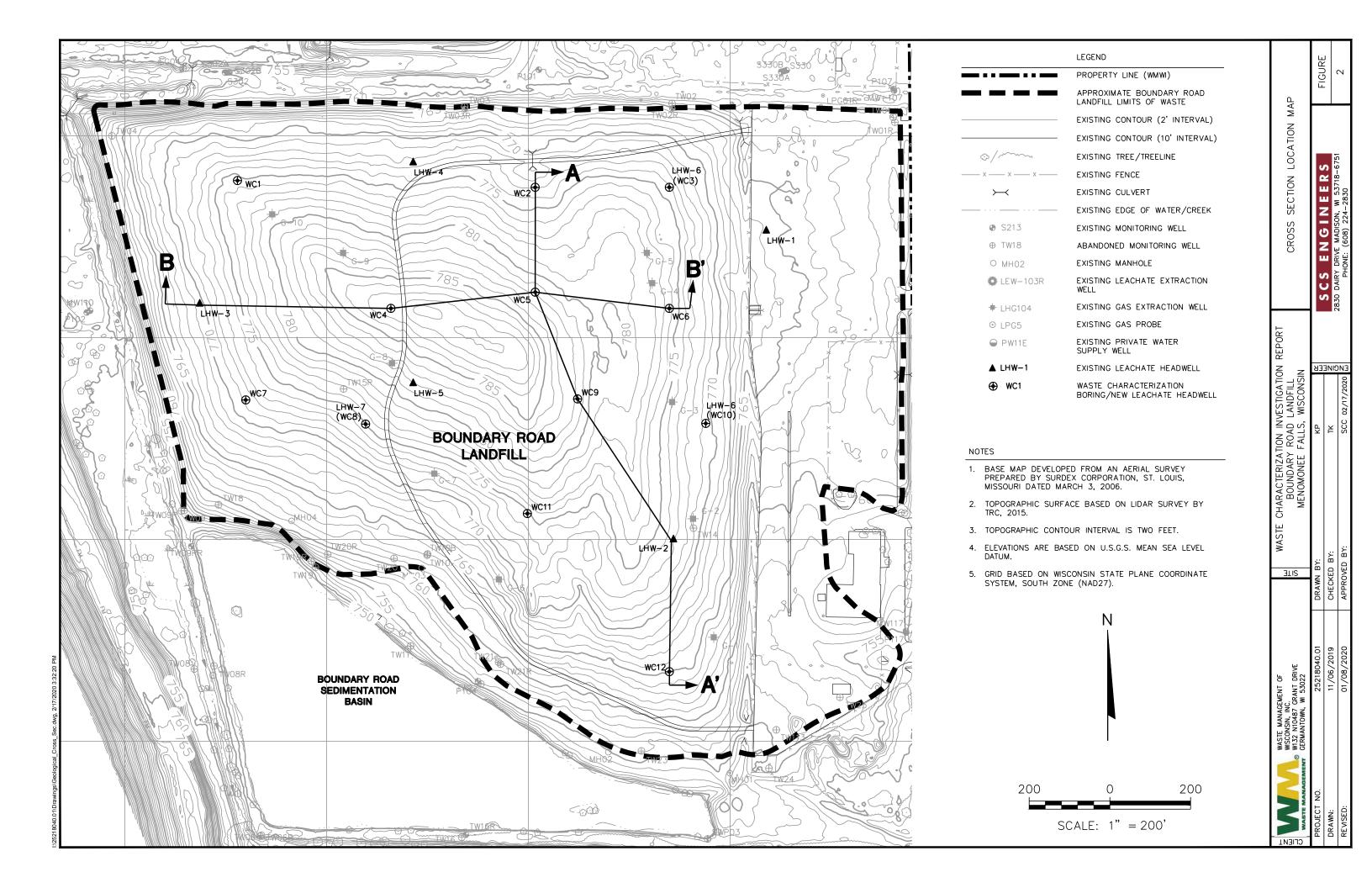
I:\25218040.01\Deliverables\Waste Invest Report\Tables\[Tables-9-14.xlsx]PW

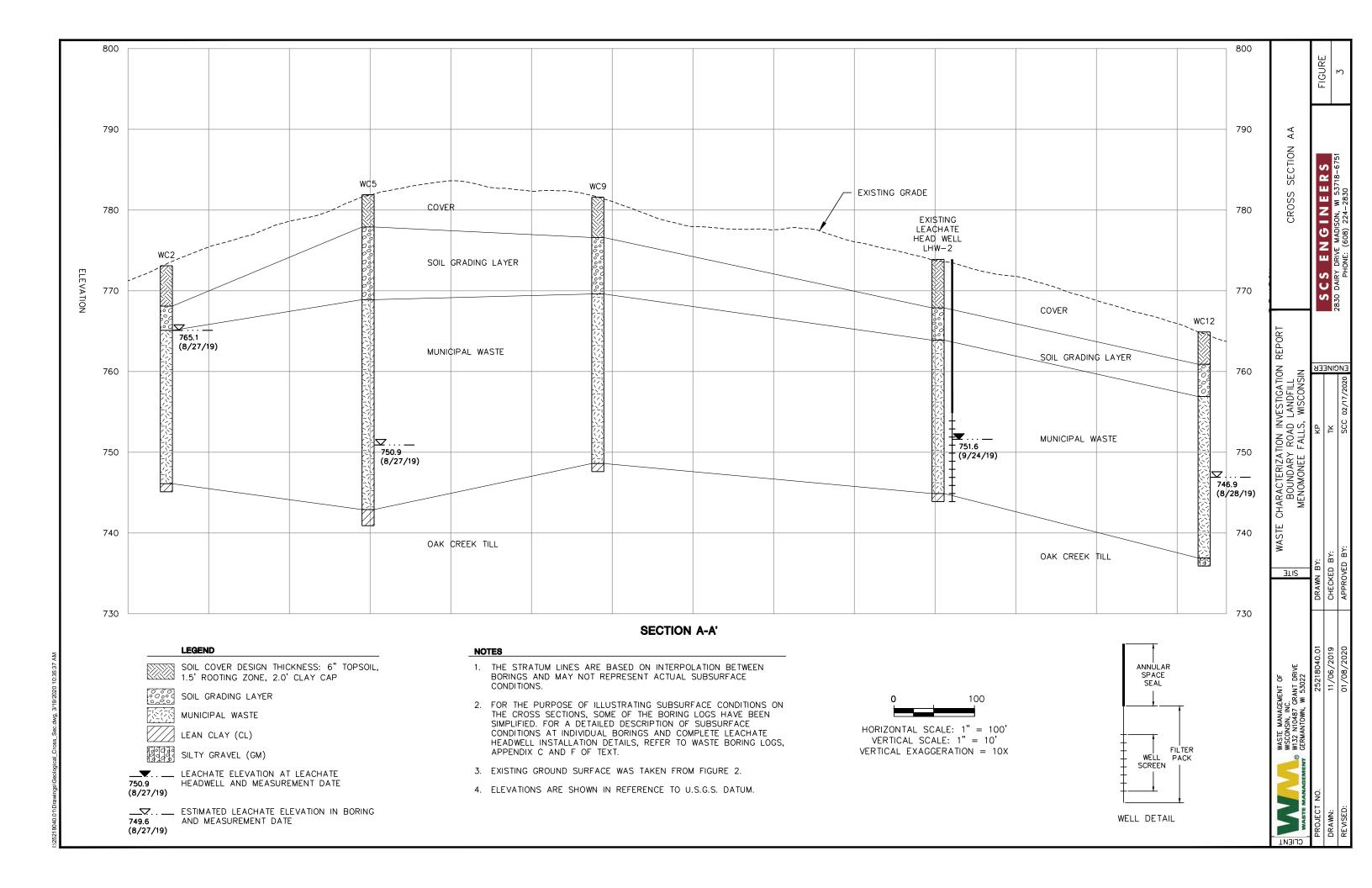
Table 14. Surface Water Monitoring Data: 2017 - 2019 WMWI Boundary Road Landfill / SCS Project #25218040.01

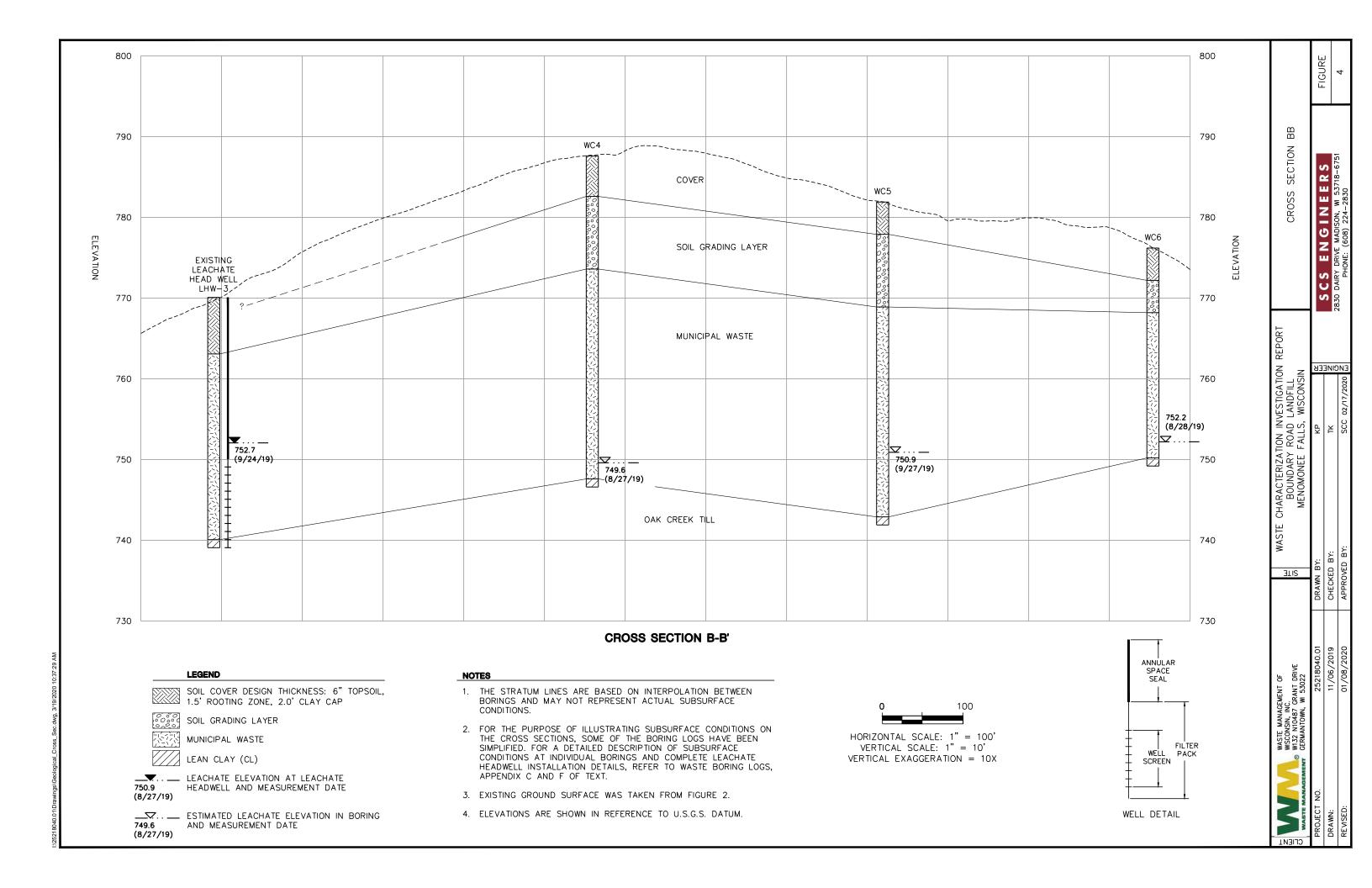
			Sample Date						
Point Name	Parameter Description	Units	9/1/2017	9/4/2018	9/3/2019				
SW01, Upstream	pH, Field	Std Units	7.59	7.82	8.17				
(WDNR ID 27)	Specific Conductance, Field	umho/cm	1316	740	1120				
	Temperature	Degrees C	14.1	23.5	19				
	Detected VOCS								
	Acetone	ug/L	ND	3.9	3.9				
SW02, Downstream	pH, Field	Std Units	7.72	7.9	7.22				
(WDNR ID 40)	Specific Conductance, Field	umho/cm	440	529	1860				
	Temperature	Degrees C	15.5	22.4	21				
	Detected VOCS								
	Acetone	ug/L	4.4	ND	7.2				
	Dichloromethane	ug/L	ND	1.9	ND				
	Toluene	ug/L	1.2	ND	ND				

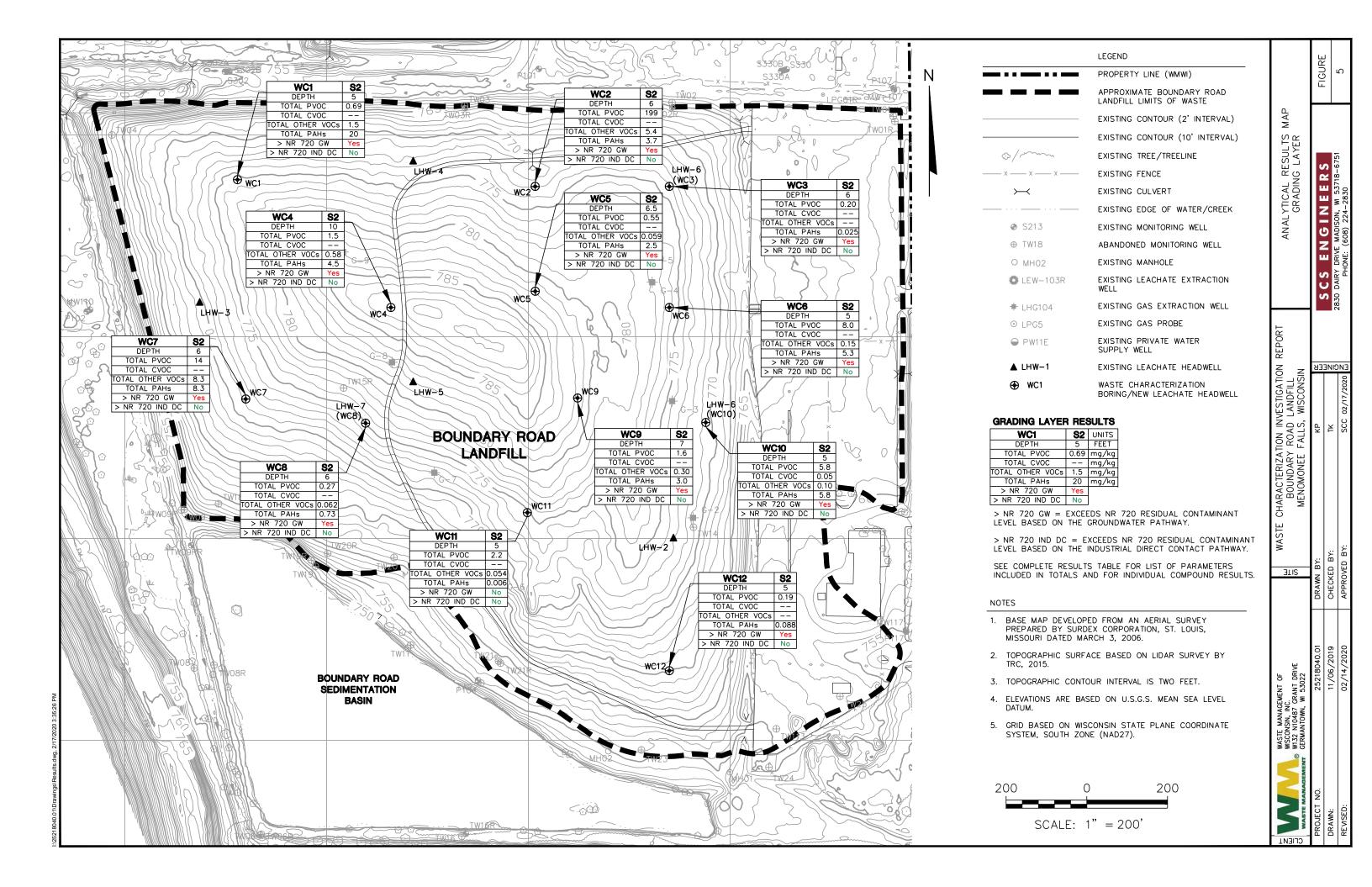
ND = Not detected

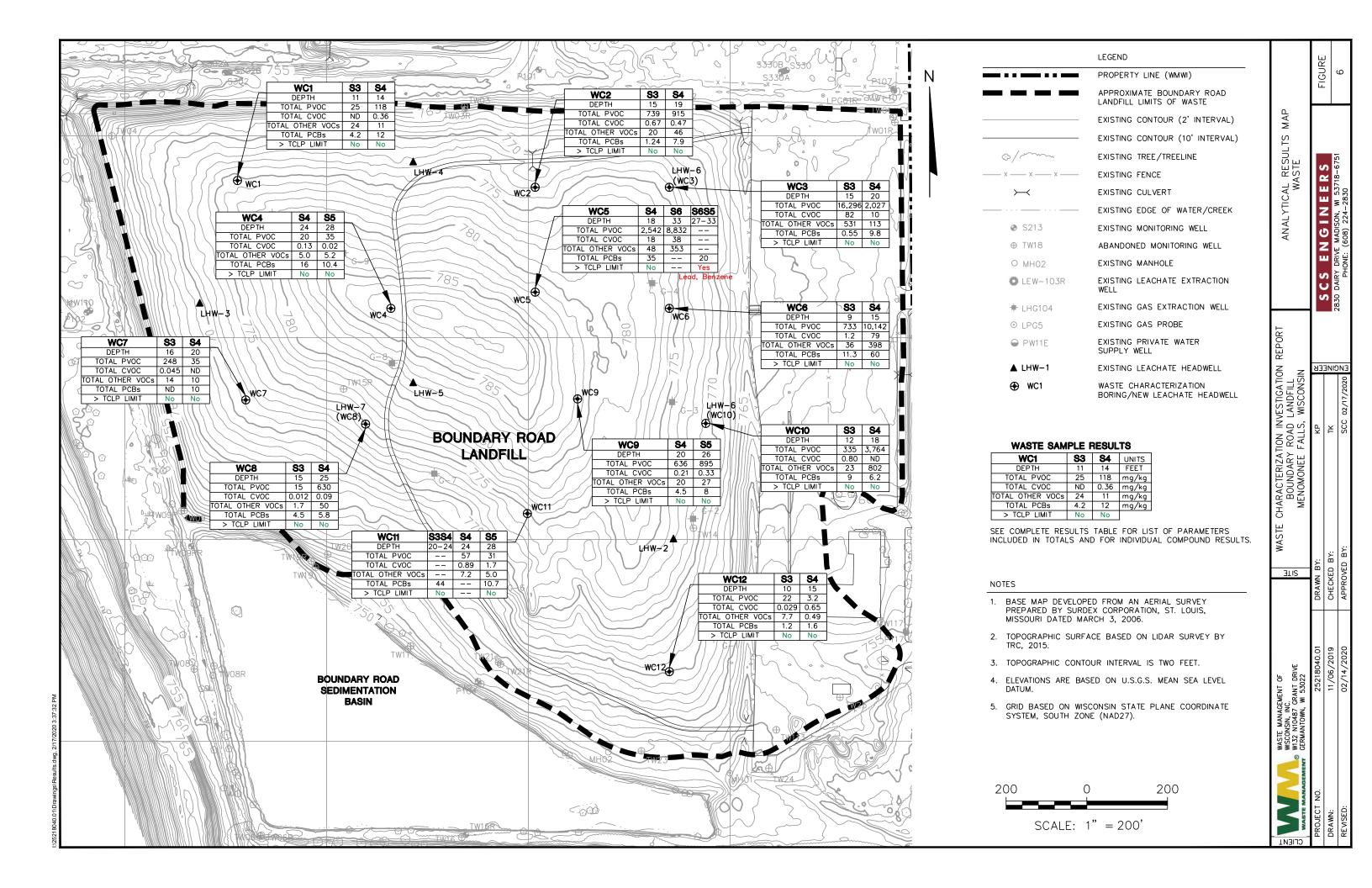

Note: Routine monitoring data downloaded from WDNR Groundwater and Environmental Monitoring System online database on 1/29/2020.

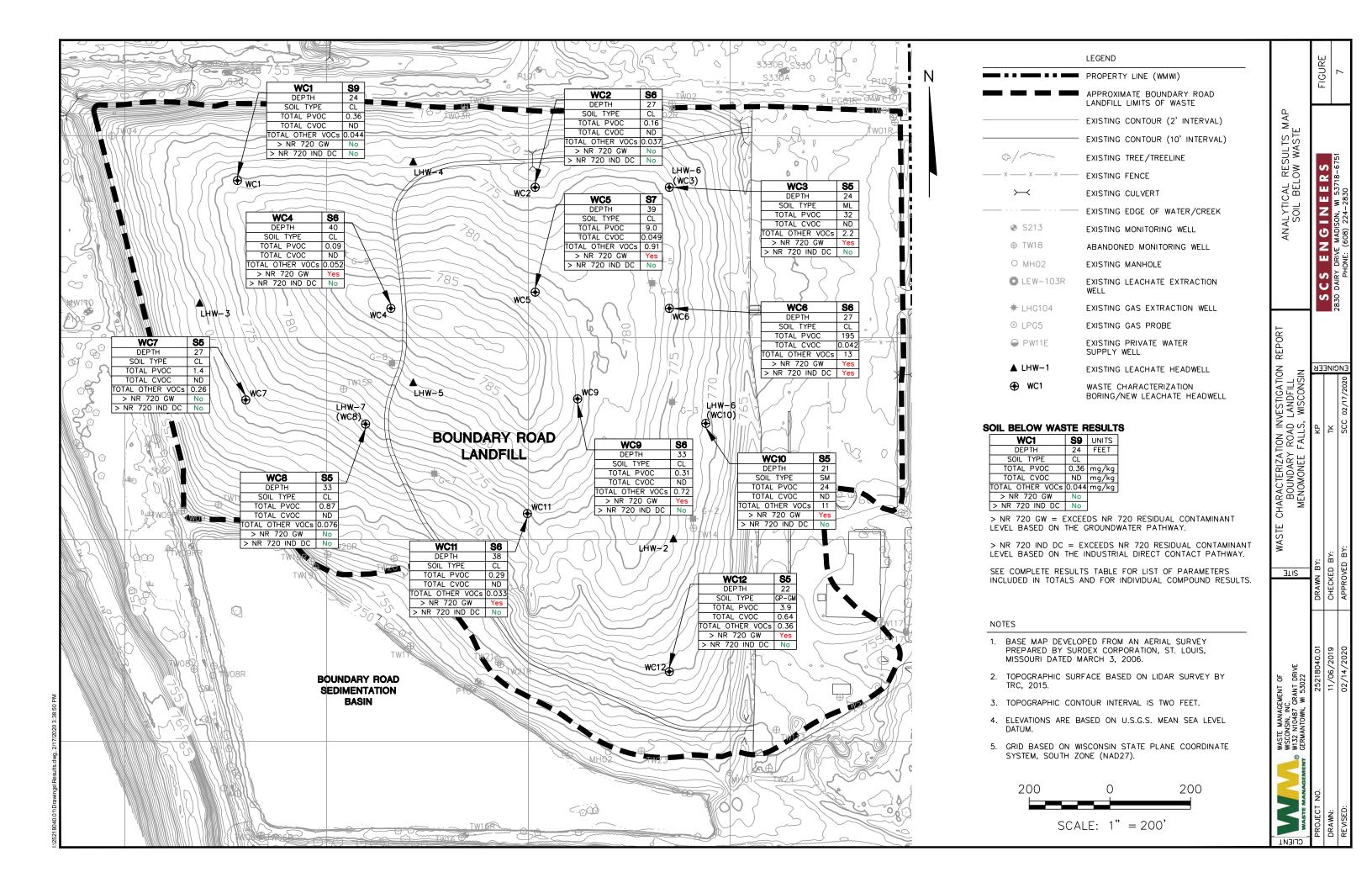

Created by: SCC, 1/30/2020 Checked by: TK, 2/5/2020


I:\25218040.01\Deliverables\Waste Invest Report\Tables\[Tables-9-14.xlsx]Surface Water


Figures


- 1 Site Layout
- 2 Cross Section Location Map
- 3 Cross Section A-A
- 4 Cross Section B-B
- 5 Analytical Results Map: Grading Layer
- 6 Analytical Results Map: Waste
- 7 Analytical Results Map: Soil Below Waste





Appendix C

Public Notice

PUBLIC NOTICE OF AN APPLICATION FOR A HAZARDOUS WASTE TREATMENT VARIANCE

Project Description

Waste Management of Wisconsin, Inc. (WMWI), N96 W13073 County Line Road, Menomonee Falls, Waukesha County, Wisconsin, has submitted an application to the Department of Natural Resources (DNR) for a hazardous waste storage and treatment variance for a remediation project pursuant to § NR 670.079 of the Wisconsin Administrative Code. The variance is allowed pursuant to § NR 670.079(1), Wis. Admin. Code and is required as part of a project that involves the removal of all waste from the closed Boundary Road Landfill (FID 268152390, DNR License #11), which is adjacent to the Orchard Ridge Recycling and Disposal Facility. The Boundary Road Landfill is an unlined landfill that accepted solid and liquid industrial waste until 1971and is listed on the National Priorities List (NPL).

The variance will allow on-site treatment of potentially hazardous waste that may be encountered during the waste removal remediation project. The exact volume of waste and soil materials that may require treatment is unknown at this time; however, the estimated quantity is less than 25,000 cubic yards. The potential contaminants include lead and volatile organic compounds. On-site treatment is anticipated to include on-site stockpiling and mixing of the waste and/or soil with stabilization agents to immobilize and degrade suspected contaminants. Treatment of wastes will be contained within the lined landfill area or within the Boundary Road Landfill footprint. Treated wastes will be placed into the lined landfill after treatment has reduced contaminant concentrations below the treatment standards or will be hauled off-site for disposal at a licensed hazardous waste disposal facility. No hazardous waste will be placed in Orchard Ridge Landfill for disposal. The project is estimated to be conducted over six to eight years commencing in late 2022. Waste relocation activities will only be conducted in the winter months, November – March. The response action may be viewed by the public using public access roads surrounding the Orchard Ridge complex.

Interested persons wishing to obtain more information may contact Mr. Mike Ellenbecker, DNR, Milwaukee Service Center, 1027 West Saint Paul Avenue, Milwaukee, Wisconsin 53233, tel. 262-752-7622, or via email at Michael.Ellenbecker@Wisconsin.gov; or Brett Coogan, District Manager, Waste Management of Wisconsin, Inc., N 96 W13073 County Line Road, Menomonee Falls, Wisconsin 53051, tel. (262) 509-5641, or via email at bcoogan@wm.com.

Complete copies of the hazardous waste treatment variance request are available for public review at the following locations:

Wisconsin Department of Natural Resources Milwaukee Service Center 1027 West Saint Paul Avenue Milwaukee, WI 53233 Please contact BJ LeRoy for an appointment

Menomonee Falls Public Library W156N8436 Pilgrim Road Menomonee Falls, WI 53051

Waste Management of Wisconsin, Inc.

Orchard Ridge Landfill N96 W13073 County Line Road Menomonee Falls, WI 53051 Please contact Brett Coogan for an appointment

Public Comments

Interested persons wishing to comment on the application should do so within 30 days of publication of this notice and send comments to Michael Ellenbecker, DNR, Milwaukee Service Center, 1027 West Saint Paul Avenue, Milwaukee, Wisconsin 53233.

Reasonable accommodation, including the provision of informational material in an alternative format, will be provided for qualified individuals with disabilities upon request.

Dated October 6, 2022

Waste Management of Wisconsin, Inc.

By: Brett Coogan, District Manager